1
|
Eghbalsaied S, Lawler C, Petersen B, Hajiyev RA, Bischoff SR, Frankenberg S. CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering. Gene Ther 2024; 31:209-223. [PMID: 38177342 DOI: 10.1038/s41434-023-00434-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Base editors are a type of double-stranded break (DSB)-free gene editing technology that has opened up new possibilities for precise manipulation of mitochondrial DNA (mtDNA). This includes cytosine and adenosine base editors and more recently guanosine base editors. Because of having low off-target and indel rates, there is a growing interest in developing and evolving this research field. Here, we provide a detailed update on DNA base editors. While base editing has widely been used for nuclear genome engineering, the growing interest in applying this technology to mitochondrial DNA has been faced with several challenges. While Cas9 protein has been shown to enter mitochondria, use of smaller Cas proteins, such as Cas12a, has higher import efficiency. However, sgRNA transfer into mitochondria is the most challenging step. sgRNA structure and ratio of Cas protein to sgRNA are both important factors for efficient sgRNA entry into mitochondria. In conclusion, while there are still several challenges to be addressed, ongoing research in this field holds the potential for new treatments and therapies for mitochondrial disorders.
Collapse
Affiliation(s)
- Shahin Eghbalsaied
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
- Department of Animal Science, Isfahan Branch, Islamic Azad University (IAU), Isfahan, Iran.
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.
| | - Clancy Lawler
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Björn Petersen
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Mariensee, Germany
- eGenesis, 2706 HWY E, 53572, Mount Horeb, WI, USA
| | - Raul A Hajiyev
- Department of Genome Engineering, NovoHelix, Miami, FL, USA
- Department of Computer Science, Kent State University, Kent, OH, USA
| | - Steve R Bischoff
- Department of Genome Engineering, NovoHelix, Miami, FL, USA
- Foundry for Genome Engineering & Reproductive Medicine (FGERM), Miami, FL, USA
| | - Stephen Frankenberg
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Kamenski PA, Krasheninnikov IA, Tarassov I. 40 Years of Studying RNA Import into Mitochondria: From Basic Mechanisms to Gene Therapy Strategies. Mol Biol 2019. [DOI: 10.1134/s0026893319060074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Verechshagina NA, Konstantinov YM, Kamenski PA, Mazunin IO. Import of Proteins and Nucleic Acids into Mitochondria. BIOCHEMISTRY (MOSCOW) 2018; 83:643-661. [DOI: 10.1134/s0006297918060032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Smirnova EV, Chicherin IV, Baleva MV, Entelis NS, Tarassov IA, Kamenski PA. Procedure for Purification of Recombinant preMsk1p from E. coli Determines Its Properties as a Factor of tRNA Import into Yeast Mitochondria. BIOCHEMISTRY (MOSCOW) 2016; 81:1081-1088. [PMID: 27908233 DOI: 10.1134/s0006297916100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondrial genomes of many eukaryotic organisms do not code for the full tRNA set necessary for organellar translation. Missing tRNA species are imported from the cytosol. In particular, one out of two cytosolic lysine tRNAs of the yeast Saccharomyces cerevisiae is partially internalized by mitochondria. The key protein factor of this process is the precursor of mitochondrial lysyl-tRNA synthetase, preMsk1p. In this work, we show that recombinant preMsk1p purified from E. coli in native conditions, when used in an in vitro tRNA import system, demonstrates some properties different from those shown by the renatured protein purified from E. coli in the denatured state. We also discuss the possible mechanistic reasons for this phenomenon.
Collapse
Affiliation(s)
- E V Smirnova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
5
|
Baleva M, Gowher A, Kamenski P, Tarassov I, Entelis N, Masquida B. A Moonlighting Human Protein Is Involved in Mitochondrial Import of tRNA. Int J Mol Sci 2015; 16:9354-67. [PMID: 25918939 PMCID: PMC4463592 DOI: 10.3390/ijms16059354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 12/29/2022] Open
Abstract
In yeast Saccharomyces cerevisiae, ~3% of the lysine transfer RNA acceptor 1 (tRK1) pool is imported into mitochondria while the second isoacceptor, tRK2, fully remains in the cytosol. The mitochondrial function of tRK1 is suggested to boost mitochondrial translation under stress conditions. Strikingly, yeast tRK1 can also be imported into human mitochondria in vivo, and can thus be potentially used as a vector to address RNAs with therapeutic anti-replicative capacity into mitochondria of sick cells. Better understanding of the targeting mechanism in yeast and human is thus critical. Mitochondrial import of tRK1 in yeast proceeds first through a drastic conformational rearrangement of tRK1 induced by enolase 2, which carries this freight to the mitochondrial pre-lysyl-tRNA synthetase (preMSK). The latter may cross the mitochondrial membranes to reach the matrix where imported tRK1 could be used by the mitochondrial translation apparatus. This work focuses on the characterization of the complex that tRK1 forms with human enolases and their role on the interaction between tRK1 and human pre-lysyl-tRNA synthetase (preKARS2).
Collapse
Affiliation(s)
- Maria Baleva
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
- Department of Molecular Biology, Biology Faculty of Moscow State University, 119992 Moscow, Russia.
| | - Ali Gowher
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Piotr Kamenski
- Department of Molecular Biology, Biology Faculty of Moscow State University, 119992 Moscow, Russia.
| | - Ivan Tarassov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Nina Entelis
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Benoît Masquida
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
6
|
Smirnova EV, Lakunina VA, Tarassov I, Krasheninnikov IA, Kamenski PA. Noncanonical functions of aminoacyl-tRNA synthetases. BIOCHEMISTRY (MOSCOW) 2012; 77:15-25. [PMID: 22339629 DOI: 10.1134/s0006297912010026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aminoacyl-tRNA synthetases, together with their main function of covalent binding of an amino acid to a corresponding tRNA, also perform many other functions. They take part in regulation of gene transcription, apoptosis, translation, and RNA splicing. Some of them function as cytokines or catalyze different reactions in living cells. Noncanonical functions can be mediated by additional domains of these proteins. On the other hand, some of the noncanonical functions are directly associated with the active center of the aminoacylation reaction. In this review we summarize recent data on the noncanonical functions of aminoacyl-tRNA synthetases and on the mechanisms of their action.
Collapse
Affiliation(s)
- E V Smirnova
- Department of Molecular Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
7
|
Lyrawati D, Trounson A, Cram D. Expression of GFP in the mitochondrial compartment using DQAsome-mediated delivery of an artificial mini-mitochondrial genome. Pharm Res 2011; 28:2848-62. [PMID: 21833794 DOI: 10.1007/s11095-011-0544-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 07/21/2011] [Indexed: 12/13/2022]
Abstract
PURPOSE We describe a novel strategy for expression of GFP in mammalian mitochondria. METHODS The key components of the strategy were an artificially created mitochondrial genome pmtGFP and a DQAsome transfection system. RESULTS Using immunofluorescence and a combination of immunohistochemical and molecular based techniques, we show that DQAsomes are capable of delivering the pmtGFP construct to the mitochondrial compartment of the mouse macrophage cell line RAW264.7, albeit at low efficiency (1-5%), resulting in the expression of GFP mRNA and protein. Similar transfection efficiencies were also demonstrated in a range of other mammalian cell lines. CONCLUSIONS The DQAsome-transfection technique was able to deliver the exogenous DNA into the cellular mitochondria and the pmtGFP was functional. Further optimization of this strategy would provide a flexible and rapid way to generate mutant cells and useful animal models of mitochondrial disease.
Collapse
Affiliation(s)
- Diana Lyrawati
- Laboratory of Pharmacy, Faculty of Medicine, Brawijaya University, Jl. Veteran, Malang, Indonesia.
| | | | | |
Collapse
|
8
|
Rubio MAT, Hopper AK. Transfer RNA travels from the cytoplasm to organelles. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:802-17. [PMID: 21976284 DOI: 10.1002/wrna.93] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transfer RNAs (tRNAs) encoded by the nuclear genome are surprisingly dynamic. Although tRNAs function in protein synthesis occurring on cytoplasmic ribosomes, tRNAs can transit from the cytoplasm to the nucleus and then again return to the cytoplasm by a process known as the tRNA retrograde process. Subsets of the cytoplasmic tRNAs are also imported into mitochondria and function in mitochondrial protein synthesis. The numbers of tRNA species that are imported into mitochondria differ among organisms, ranging from just a few to the entire set needed to decode mitochondrially encoded mRNAs. For some tRNAs, import is dependent on the mitochondrial protein import machinery, whereas the majority of tRNA mitochondrial import is independent of this machinery. Although cytoplasmic proteins and proteins located on the mitochondrial surface participating in the tRNA import process have been described for several organisms, the identity of these proteins differ among organisms. Likewise, the tRNA determinants required for mitochondrial import differ among tRNA species and organisms. Here, we present an overview and discuss the current state of knowledge regarding the mechanisms involved in the tRNA retrograde process and continue with an overview of tRNA import into mitochondria. Finally, we highlight areas of future research to understand the function and regulation of movement of tRNAs between the cytoplasm and organelles.
Collapse
Affiliation(s)
- Mary Anne T Rubio
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
9
|
Karicheva OZ, Kolesnikova OA, Schirtz T, Vysokikh MY, Mager-Heckel AM, Lombès A, Boucheham A, Krasheninnikov IA, Martin RP, Entelis N, Tarassov I. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria. Nucleic Acids Res 2011; 39:8173-86. [PMID: 21724600 PMCID: PMC3185436 DOI: 10.1093/nar/gkr546] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNALeu(UUR). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNALeu(UUR) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.
Collapse
Affiliation(s)
- Olga Z Karicheva
- UMR 7156 University of Strasbourg - CNRS, Molecular Genetics, Genomics & Microbiology, Strasbourg 67084, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kolesnikova O, Kazakova H, Comte C, Steinberg S, Kamenski P, Martin RP, Tarassov I, Entelis N. Selection of RNA aptamers imported into yeast and human mitochondria. RNA (NEW YORK, N.Y.) 2010; 16:926-941. [PMID: 20348443 PMCID: PMC2856887 DOI: 10.1261/rna.1914110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 02/01/2010] [Indexed: 05/29/2023]
Abstract
In the yeast Saccharomyces cerevisiae, nuclear DNA-encoded is partially imported into mitochondria. We previously found that the synthetic transcripts of yeast tRNA(Lys) and a number of their mutant versions could be specifically internalized by isolated yeast and human mitochondria. The mitochondrial targeting of tRNA(Lys) in yeast was shown to depend on the cytosolic precursor of mitochondrial lysyl-tRNA synthetase and the glycolytic enzyme enolase. Here we applied the approach of in vitro selection (SELEX) to broaden the spectrum of importable tRNA-derived molecules. We found that RNAs selected for their import into isolated yeast mitochondria have lost the potential to acquire a classical tRNA-shape. Analysis of conformational rearrangements in the importable RNAs by in-gel fluorescence resonance energy transfer (FRET) approach permitted us to suggest that protein factor binding and subsequent import require formation of an alternative structure, different from a classic L-form tRNA model. We show that in the complex with targeting protein factor, enolase 2, tRK1 adopts a particular conformation characterized by bringing together the 3'-end and the TPsiC loop. This is a first evidence for implication of RNA secondary structure rearrangement in the mechanism of mitochondrial import selectivity. Based on these data, a set of small RNA molecules with significantly improved efficiency of import into yeast and human mitochondria was constructed, opening the possibility of creating a new mitochondrial vector system able to target therapeutic oligoribonucleotides into deficient human mitochondria.
Collapse
MESH Headings
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Base Sequence
- Biological Transport, Active
- Fluorescence Resonance Energy Transfer
- Humans
- In Vitro Techniques
- Lysine-tRNA Ligase/metabolism
- Mitochondria/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phosphopyruvate Hydratase/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- SELEX Aptamer Technique
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Olga Kolesnikova
- UMR 7156, Université de Strasbourg/Centre National de la Recherche Scientifique (UdS/CNRS), 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
tRNA mitochondrial import in yeast: Mapping of the import determinants in the carrier protein, the precursor of mitochondrial lysyl-tRNA synthetase. Mitochondrion 2010; 10:284-93. [PMID: 20064631 DOI: 10.1016/j.mito.2010.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 12/05/2009] [Accepted: 01/05/2010] [Indexed: 02/03/2023]
Abstract
Mitochondria of many species import of nuclear DNA-encoded tRNAs. This widely spread but poorly studied phenomenon proved to be a promising tool for mitochondrial transfection. In yeast Saccharomyces cerevisiae, one cytosolic tRNAs(Lys) is partially targeted into mitochondria. Previous studies have shown that binding of this tRNA to its putative protein carrier, the precursor of mitochondrial lysyl-tRNA synthetase (preMsk1p), IIb class aminoacyl-tRNA synthetase, was a pre-requisite of import. In this work, we identify the hinge region with two adjacent helices H5 and H7 to be responsible for mitochondrial targeting of the tRNA and characterize preMsk1p versions with altered tRK1 import capacities.
Collapse
|
12
|
Kamenski PA, Vinogradova EN, Krasheninnikov IA, Tarassov IA. Directed import of macromolecules into mitochondria. Mol Biol 2007. [DOI: 10.1134/s0026893307020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Mager-Heckel AM, Entelis N, Brandina I, Kamenski P, Krasheninnikov IA, Martin RP, Tarassov I. The analysis of tRNA import into mammalian mitochondria. Methods Mol Biol 2007; 372:235-253. [PMID: 18314730 DOI: 10.1007/978-1-59745-365-3_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ribonucleic acid (RNA) import into mitochondria occurs in a variety of organisms. In mammalian cells, several small RNAs are imported in a natural manner; transfer RNAs (tRNAs) can be imported in an artificial way, following expression of corresponding genes from another organism (yeast) in the nucleus. We describe how to establish and to analyze such import mechanisms in cultured human cells. In detail, we describe (1) the construction of plasmids expressing importable yeast tRNA derivatives in human cells, (2) the procedure of transfection of either immortalized cybrid cell lines or primary patient's fibroblasts and downregulation of tRNA expression directed by small interfering RNA (siRNA) as a way to demonstrate the effect of import in vivo, (3) the methods of mitochondrial RNA isolation from the transfectants, and (4) approaches for quantification of RNA mitochondrial import.
Collapse
|
14
|
Entelis N, Brandina I, Kamenski P, Krasheninnikov IA, Martin RP, Tarassov I. A glycolytic enzyme, enolase, is recruited as a cofactor of tRNA targeting toward mitochondria in Saccharomyces cerevisiae. Genes Dev 2006; 20:1609-20. [PMID: 16738406 PMCID: PMC1482481 DOI: 10.1101/gad.385706] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 04/11/2006] [Indexed: 11/24/2022]
Abstract
In many organisms, mitochondria import nuclear DNA-encoded small RNAs. In yeast Saccharomyces cerevisiae, one out of two cytoplasmic isoacceptor tRNAs(Lys) is partially addressed into the organelle. Mitochondrial targeting of this tRNA was shown to depend on interaction with the precursor of mitochondrial lysyl-tRNA synthetase, preMsk1p. However, preMsk1p alone was unable to direct tRNA targeting, suggesting the existence of additional protein factor(s). Here, we identify the glycolytic enzyme, enolase, as such a factor. We demonstrate that recombinant enolase and preMSK1p are sufficient to direct tRNA import in vitro and that depletion of enolase inhibits tRNA import in vivo. Enzymatic and tRNA targeting functions of enolase appear to be independent. Three newly characterized properties of the enolase can be related to its novel function: (1) specific affinity to the imported tRNA, (2) the ability to facilitate formation of the complex between preMsk1p and the imported tRNA, and (3) partial targeting toward the mitochondrial outer membrane. We propose a model suggesting that the cell exploits mitochondrial targeting of the enolase in order to address the tRNA toward peri-mitochondrially synthesized preMsk1p. Our results indicate an alternative molecular chaperone function of glycolytic enzyme enolase in tRNA mitochondrial targeting.
Collapse
Affiliation(s)
- Nina Entelis
- Department of "Molecular and Cellular Genetics," UMR 7156, CNRS-Université Louis Pasteur, Strasbourg 67084, France
| | | | | | | | | | | |
Collapse
|