1
|
Germelli L, Angeloni E, Da Pozzo E, Tremolanti C, De Felice M, Giacomelli C, Marchetti L, Muscatello B, Barresi E, Taliani S, Da Settimo Passetti F, Trincavelli ML, Martini C, Costa B. 18 kDa TSPO targeting drives polarized human microglia towards a protective and restorative neurosteroidome profile. Cell Mol Life Sci 2025; 82:34. [PMID: 39757281 DOI: 10.1007/s00018-024-05544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025]
Abstract
An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity. Here, the role of neurosteroidogenesis in the modulation of microgliosis was explored in human microglia cells. In particular, CYP11A1 inhibition or TSPO pharmacological stimulation, crucial proteins involved in the rate limiting step of the neurosteroidogenic cascade, were employed. CYP11A1 inhibition led microglia to acquire a dysfunctional and hyperreactive phenotype, while selective TSPO ligands promoted the establishment of an anti-inflammatory one. Analysis of specific neurosteroid levels (neurosteroidome) identified allopregnanolone/pregnanolone as crucial metabolites allowing controlled activation of microglia. Importantly, the neurosteroid shift towards a greater androgenic/estrogenic profile supported the transition from pro-inflammatory to neuroprotective microglia, suggesting the therapeutic potential of de novo microglial neurosteroidogenesis stimulation for neuroinflammatory-related disorders.
Collapse
Affiliation(s)
- Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy.
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Martina De Felice
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Beatrice Muscatello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Federico Da Settimo Passetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Maria Letizia Trincavelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126, Pisa, Italy
| |
Collapse
|
2
|
De novo Neurosteroidogenesis in Human Microglia: Involvement of the 18 kDa Translocator Protein. Int J Mol Sci 2021; 22:ijms22063115. [PMID: 33803741 PMCID: PMC8003294 DOI: 10.3390/ijms22063115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroactive steroids are potent modulators of microglial functions and are capable of counteracting their excessive reactivity. This action has mainly been ascribed to neuroactive steroids released from other sources, as microglia have been defined unable to produce neurosteroids de novo. Unexpectedly, immortalized murine microglia recently exhibited this de novo biosynthesis; herein, de novo neurosteroidogenesis was characterized in immortalized human microglia. The results demonstrated that C20 and HMC3 microglial cells constitutively express members of the neurosteroidogenesis multiprotein machinery-in particular, the transduceosome members StAR and TSPO, and the enzyme CYP11A1. Moreover, both cell lines produce pregnenolone and transcriptionally express the enzymes involved in neurosteroidogenesis. The high TSPO expression levels observed in microglia prompted us to assess its role in de novo neurosteroidogenesis. TSPO siRNA and TSPO synthetic ligand treatments were used to reduce and prompt TSPO function, respectively. The TSPO expression downregulation compromised the de novo neurosteroidogenesis and led to an increase in StAR expression, probably as a compensatory mechanism. The pharmacological TSPO stimulation the de novo neurosteroidogenesis improved in turn the neurosteroid-mediated release of Brain-Derived Neurotrophic Factor. In conclusion, these results demonstrated that de novo neurosteroidogenesis occurs in human microglia, unravelling a new mechanism potentially useful for future therapeutic purposes.
Collapse
|
3
|
Veiga S, Leonelli E, Beelke M, Garcia-Segura LM, Melcangi RC. Neuroactive steroids prevent peripheral myelin alterations induced by diabetes. Neurosci Lett 2006; 402:150-3. [PMID: 16626861 DOI: 10.1016/j.neulet.2006.03.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 03/27/2006] [Accepted: 03/28/2006] [Indexed: 12/18/2022]
Abstract
The effect of the neuroactive steroids progesterone, dihydroprogesterone and tetrahydroprogesterone on myelin abnormalities induced by diabetes was studied in the sciatic nerve of adult male rats treated with streptozotocin. Streptozotocin increased blood glucose levels and decreased body weight gain, parameters not affected by steroids. Streptozotocin increased the number of fibers with myelin infoldings in the axoplasm, 8 months after the treatment. Chronic treatment for 1 month with progesterone and dihydroprogesterone resulted in a significant reduction in the number of fibers with myelin infoldings to control levels. Treatment with tetrahydroprogesterone did not significantly affect this myelin alteration. These results suggest that neuroactive steroids such as progesterone and dihydroprogesterone may represent therapeutic alternatives to counteract peripheral myelin alterations induced by diabetes.
Collapse
Affiliation(s)
- Sergio Veiga
- Instituto Cajal, C.S.I.C., Avenida Dr. Arce 37, 28002 Madrid, Spain
| | | | | | | | | |
Collapse
|
5
|
Melcangi RC, Cavarretta ITR, Ballabio M, Leonelli E, Schenone A, Azcoitia I, Miguel Garcia-Segura L, Magnaghi V. Peripheral nerves: a target for the action of neuroactive steroids. ACTA ACUST UNITED AC 2005; 48:328-38. [PMID: 15850671 DOI: 10.1016/j.brainresrev.2004.12.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022]
Abstract
Peripheral nervous system possesses both classical and non-classical steroid receptors and consequently may represent a target for the action of neuroactive steroids. The present review summarizes the state of art of this intriguing field of research reporting data which indicate that neuroactive steroids, like for instance progesterone, dihydroprogesterone, tetrahydroprogesterone, dihydrotestosterone and 3alpha-diol, stimulate the expression of two important proteins of the myelin of peripheral nerves, the glycoprotein P0 (P0) and the peripheral myelin protein 22 (PMP22). Interestingly, the mechanisms by which neuroactive steroids exert their effects involve classical steroid receptors, like for instance progesterone and androgen receptors, in case of P0 and non-classical steroid receptors, like GABA(A) receptor, in case of PMP22. Moreover, neuroactive steroids not only control the expression of these specific myelin proteins, but also influence the morphology of myelin sheaths and axons suggesting that these molecules may represent an interesting new therapeutic approach to maintain peripheral nerve integrity during neurodegenerative events.
Collapse
|