1
|
Koniuszewski F, Vogel FD, Dajić I, Seidel T, Kunze M, Willeit M, Ernst M. Navigating the complex landscape of benzodiazepine- and Z-drug diversity: insights from comprehensive FDA adverse event reporting system analysis and beyond. Front Psychiatry 2023; 14:1188101. [PMID: 37457785 PMCID: PMC10345211 DOI: 10.3389/fpsyt.2023.1188101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Medications which target benzodiazepine (BZD) binding sites of GABAA receptors (GABAARs) have been in widespread use since the nineteen-sixties. They carry labels as anxiolytics, hypnotics or antiepileptics. All benzodiazepines and several nonbenzodiazepine Z-drugs share high affinity binding sites on certain subtypes of GABAA receptors, from which they can be displaced by the clinically used antagonist flumazenil. Additional binding sites exist and overlap in part with sites used by some general anaesthetics and barbiturates. Despite substantial preclinical efforts, it remains unclear which receptor subtypes and ligand features mediate individual drug effects. There is a paucity of literature comparing clinically observed adverse effect liabilities across substances in methodologically coherent ways. Methods In order to examine heterogeneity in clinical outcome, we screened the publicly available U.S. FDA adverse event reporting system (FAERS) database for reports of individual compounds and analyzed them for each sex individually with the use of disproportionality analysis. The complementary use of physico-chemical descriptors provides a molecular basis for the analysis of clinical observations of wanted and unwanted drug effects. Results and Discussion We found a multifaceted FAERS picture, and suggest that more thorough clinical and pharmacoepidemiologic investigations of the heterogenous side effect profiles for benzodiazepines and Z-drugs are needed. This may lead to more differentiated safety profiles and prescription practice for particular compounds, which in turn could potentially ease side effect burden in everyday clinical practice considerably. From both preclinical literature and pharmacovigilance data, there is converging evidence that this very large class of psychoactive molecules displays a broad range of distinctive unwanted effect profiles - too broad to be explained by the four canonical, so-called "diazepam-sensitive high-affinity interaction sites". The substance-specific signatures of compound effects may partly be mediated by phenomena such as occupancy of additional binding sites, and/or synergistic interactions with endogenous substances like steroids and endocannabinoids. These in turn drive the wanted and unwanted effects and sex differences of individual compounds.
Collapse
Affiliation(s)
- Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Florian D. Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Irena Dajić
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Seidel
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Matthäus Willeit
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
2
|
Zhong Y, Zheng Q, Hu P, Huang X, Yang M, Ren G, Li J, Du Q, Liu S, Zhang K, Wu L, Zhu L, Guo Y, Li W, Xiao S, Shuai S, Zhang M. Sedative and hypnotic effects of Perilla frutescens essential oil through GABAergic system pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113627. [PMID: 33246117 DOI: 10.1016/j.jep.2020.113627] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/16/2020] [Accepted: 11/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine believes that depression syndrome has become one of the core pathogenesis of insomnia. The pharmacology of traditional Chinese medicine points out that Perilla frutescens has the effect of regulating Qi and relieving depression, promoting Qi circulation to relieve pain, so Perilla frutescens may have the potential therapeutic effect on insomnia. Related studies have reported the sedative and hypnotic effects of Perilla frutescens, but these studies have not yet explored the mechanism of sedative and hypnotic effects of Perilla frutescens essential oil (PFEO) through inhalation administration. AIM OF THE STUDY The purpose of this study is to explore the underlying sedative and hypnotic mechanisms of PFEO through the GABAergic system pathways. MATERIALS AND METHODS Established the PCPA insomnia model of mice, The open field test, pentobarbital-induced falling asleep rate, latency of sleeping time, and duration of sleeping time experiments were used to evaluate the behavior of mice, the enzyme-linked immunosorbent assay was used to analyze the content of 5-HT and GABA in hypothalamus and cerebral cortex. Immunohistochemical experiment, Western blot experiment and RT-PCR experiment were used to study the mechanism of PFEO through GABAergic pathway to regulate insomnia. The main volatile constituents of PFEO were analyzed by gas chromatography-mass spectrometry (GC-MS). RESULTS The inhalation of PFEO has sedative and hypnotic effects, which reduce significantly the autonomic activity of PCPA insomnia mice, increase falling asleep rate, shorten latency of sleeping time, and prolong duration of sleeping time; the results of enzyme-linked immunosorbent assay show that PFEO increase the content of 5-HT and GABA in hypothalamus and cerebral cortex. The results showed that inhalation of PFEO increase the expression of GABAAα1 and GABAAα2 positive cells, increase the level of GABAAα1 and GABAAα2 protein and also increase the level of GABAAα1 mRNA and GABAAα2 mRNA in the hypothalamus and cerebral cortex. The highest content of PFEO is Perillaldehyde (54.37%), followed by 1,4-Cineole (7.42%), Acetaldehyde diethyl acetal (6.61%), D-Limonene (5.09%), Eucalyptol (4.94%), etc. CONCLUSION: The inhalation of PFEO has sedative and hypnotic effects, it is speculated that the mechanism of which may be the sedative and hypnotic effects through the GABAergic pathway.
Collapse
Affiliation(s)
- Yu Zhong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiaoying Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Guilin Ren
- Traditional Chinese Medicine Hospital Affliated to Southwest Medical University, Luzhou, 646000, China
| | - Jing Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Qing Du
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Shanshan Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Kenan Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Ling Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Liyun Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Yuanyuan Guo
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Wenjing Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Shuai Xiao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Shuyuan Shuai
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Mingxia Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
3
|
Muscimol microinjected in the arcuate nucleus affects metabolism, body temperature & ventilation. Respir Physiol Neurobiol 2016; 227:34-40. [PMID: 26934718 DOI: 10.1016/j.resp.2016.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/20/2016] [Accepted: 02/25/2016] [Indexed: 01/24/2023]
Abstract
Effects of microinjection of 2 doses of γ-aminobutyric acid (GABA)A receptor agonist, muscimol (M), into the hypothalamic arcuate nucleus on oxygen consumption and control of ventilation over time and body temperature (BT) at the end of the experiment were compared in adult male and female rats. Relative to cerebrospinal fluid (CSF, 0 nmol), BT was decreased only in male rats with both doses of M, while in female rats, the 5 nmol dose depressed oxygen consumption. Ventilation was depressed by 5 nmol M in male and 10 nmol M in female rats by decreasing tidal volume. M did not affect the ventilatory response of male or female rats to hypoxia, whereas in females 5 and 10 nmol M and in males 10 nmol M depressed the ventilatory response to hypercapnia. Thus, in rats GABAA receptors in the arcuate nucleus modulate BT, oxygen consumption, and ventilation in air and in response to hypercapnia in a sexually dimorphic manner.
Collapse
|