1
|
Spontaneous head twitches in aged rats: behavioral and molecular study. Psychopharmacology (Berl) 2022; 239:3847-3857. [PMID: 36278982 PMCID: PMC9672005 DOI: 10.1007/s00213-022-06253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/03/2022] [Indexed: 10/31/2022]
Abstract
RATIONALE We have discovered that rats at the age of 18 months begin to twitch their heads spontaneously (spontaneous head twitching, SHT). To date, no one has described this phenomenon. OBJECTIVES The purpose of this study was to characterize SHT pharmacologically and to assess some possible mechanisms underlying SHT. METHODS Wistar male rats were used in the study. Animals at the age of 18 months were qualified as HSHT (SHT ≥ 7/10 min observations) or LSHT (SHT < 7/10 min observations). Quantitative real-time PCR with TaqMan low-density array (TLDA) approach was adopted to assess the mRNA expression of selected genes in rat's hippocampus. RESULTS HSHT rats did not differ from LSHT rats in terms of survival time, general health and behavior, water intake, and spontaneous locomotor activity. 2,5-dimethoxy-4-iodoamphetamine (DOI) at a dose of 2.5 mg/kg increased the SHT in HSHT and LSHT rats, while ketanserin dose-dependently abolished the SHT in the HSHT rats. The SHT was reduced or abolished by olanzapine, clozapine, risperidone, and pimavanserin. All these drugs have strong 5-HT2A receptor-inhibiting properties. Haloperidol and amisulpride, as antipsychotic drugs with a mostly dopaminergic mechanism of action, did not influence SHT. Similarly, escitalopram did not affect SHT. An in-depth gene expression analysis did not reveal significant differences between the HSHT and the LSHT rats. CONCLUSIONS SHT appears in some aging rats (about 50%) and is permanent over time and specific to individuals. The 5-HT2A receptor strongly controls SHT. HSHT animals can be a useful animal model for studying 5-HT2A receptor ligands.
Collapse
|
2
|
Trofimova I. Functional Constructivism Approach to Multilevel Nature of Bio-Behavioral Diversity. Front Psychiatry 2021; 12:641286. [PMID: 34777031 PMCID: PMC8578849 DOI: 10.3389/fpsyt.2021.641286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Attempts to revise the existing classifications of psychiatric disorders (DSM and ICD) continue and highlight a crucial need for the identification of biomarkers underlying symptoms of psychopathology. The present review highlights the benefits of using a Functional Constructivism approach in the analysis of the functionality of the main neurotransmitters. This approach explores the idea that behavior is neither reactive nor pro-active, but constructive and generative, being a transient selection of multiple degrees of freedom in perception and actions. This review briefly describes main consensus points in neuroscience related to the functionality of eight neurochemical ensembles, summarized as a part of the neurochemical model Functional Ensemble of Temperament (FET). None of the FET components is represented by a single neurotransmitter; all neurochemical teams have specific functionality in selection of behavioral degrees of freedom and stages of action construction. The review demonstrates the possibility of unifying taxonomies of temperament and classifications of psychiatric disorders and presenting these taxonomies formally and systematically. The paper also highlights the multi-level nature of regulation of consistent bio-behavioral individual differences, in line with the concepts of diagonal evolution (proposed earlier) and Specialized Extended Phenotype.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Ellerbrock I, Sandström A, Tour J, Fanton S, Kadetoff D, Schalling M, Jensen KB, Sitnikov R, Kosek E. Serotonergic gene-to-gene interaction is associated with mood and GABA concentrations but not with pain-related cerebral processing in fibromyalgia subjects and healthy controls. Mol Brain 2021; 14:81. [PMID: 33980291 PMCID: PMC8117625 DOI: 10.1186/s13041-021-00789-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
The neurotransmitter serotonin, involved in the regulation of pain and emotion, is critically regulated by the 5‐HT1A autoreceptor and the serotonin transporter (5-HTT). Polymorphisms of these genes affect mood and endogenous pain modulation, both demonstrated to be altered in fibromyalgia subjects (FMS). Here, we tested the effects of genetic variants of the 5‐HT1A receptor (CC/G-carriers) and 5-HTT (high/intermediate/low expression) on mood, pain sensitivity, cerebral processing of evoked pain (functional MRI) and concentrations of GABA and glutamate (MR spectroscopy) in rostral anterior cingulate cortex (rACC) and thalamus in FMS and healthy controls (HC). Interactions between serotonin-relevant genes were found in affective characteristics, with genetically inferred high serotonergic signalling (5-HT1A CC/5-HTThigh genotypes) being more favourable across groups. Additionally, 5‐HT1A CC homozygotes displayed higher pain thresholds than G-carriers in HC but not in FMS. Cerebral processing of evoked pressure pain differed between groups in thalamus with HC showing more deactivation than FMS, but was not influenced by serotonin-relevant genotypes. In thalamus, we observed a 5‐HT1A-by-5-HTT and group-by-5-HTT interaction in GABA concentrations, with the 5-HTT high expressing genotype differing between groups and 5‐HT1A genotypes. No significant effects were seen for glutamate or in rACC. To our knowledge, this is the first report of this serotonergic gene-to-gene interaction associated with mood, both among FMS (depression) and across groups (anxiety). Additionally, our findings provide evidence of an association between the serotonergic system and thalamic GABA concentrations, with individuals possessing genetically inferred high serotonergic signalling exhibiting the highest GABA concentrations, possibly enhancing GABAergic inhibitory effects via 5-HT.
Collapse
Affiliation(s)
- Isabel Ellerbrock
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden. .,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeanette Tour
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology, Blekinge Hospital, Karlskrona, Sweden
| | - Silvia Fanton
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karin B Jensen
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Rouslan Sitnikov
- MRI Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Abstract
Most people who are regular consumers of psychoactive drugs are not drug addicts, nor will they ever become addicts. In neurobiological theories, non-addictive drug consumption is acknowledged only as a "necessary" prerequisite for addiction, but not as a stable and widespread behavior in its own right. This target article proposes a new neurobiological framework theory for non-addictive psychoactive drug consumption, introducing the concept of "drug instrumentalization." Psychoactive drugs are consumed for their effects on mental states. Humans are able to learn that mental states can be changed on purpose by drugs, in order to facilitate other, non-drug-related behaviors. We discuss specific "instrumentalization goals" and outline neurobiological mechanisms of how major classes of psychoactive drugs change mental states and serve non-drug-related behaviors. We argue that drug instrumentalization behavior may provide a functional adaptation to modern environments based on a historical selection for learning mechanisms that allow the dynamic modification of consummatory behavior. It is assumed that in order to effectively instrumentalize psychoactive drugs, the establishment of and retrieval from a drug memory is required. Here, we propose a new classification of different drug memory subtypes and discuss how they interact during drug instrumentalization learning and retrieval. Understanding the everyday utility and the learning mechanisms of non-addictive psychotropic drug use may help to prevent abuse and the transition to drug addiction in the future.
Collapse
|