1
|
Szereda-Przestaszewska M, Kaczyńska K. Serotonin and substance P: Synergy or competition in the control of breathing. Auton Neurosci 2020; 225:102658. [PMID: 32145695 DOI: 10.1016/j.autneu.2020.102658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022]
Abstract
Numerous neurotransmitters identified in the central nervous system play role in ventilatory control. This mini-review focuses on the respiratory effects of two neurotransmitters: serotonin (5-HT) and substance P (SP). We discuss their co-localization in medullary raphe nuclei, expression of proper receptors within the specific regions of respiratory related structures and contribution to respiratory rhythmogenesis.
Collapse
Affiliation(s)
- Małgorzata Szereda-Przestaszewska
- Department of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
2
|
Abstract
Bilateral adductor vocal cord paralysis (BAdP), presenting with features of laryngeal incompetence, is a rare form of congenital bilateral vocal cord paralysis, and only 2 small series of BAdP have previously been published. Three cases are reported here. The BAdP occurred as an isolated abnormality in 1 child, and was associated with a recognizable syndrome (Robinow's syndrome and 22q deletion) in the other 2 children. Gastrostomy tube feeding was required in 2 children, who both remain gastrostomy tube–dependent at 26 months and 10 years 9 months of age. The child with Robinow's syndrome received parenteral nutrition until 2 months, but was then able to feed orally after partial improvement in vocal cord function. The global impairment in vocal cord constrictor function observed in these 3 children is consistent with the site of lesion's being at the level of the laryngeal constrictor motoneurons in BAdP.
Collapse
Affiliation(s)
- Robert G Berkowitz
- Dept of Otolaryngology, Royal Children's Hospital, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Kim SJ, Kim YJ, Kakall Z, Farnham MMJ, Pilowsky PM. Intermittent hypoxia-induced cardiorespiratory long-term facilitation: A new role for microglia. Respir Physiol Neurobiol 2016; 226:30-8. [PMID: 27015670 DOI: 10.1016/j.resp.2016.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
Intermittent hypoxia induces plasticity in neural networks controlling breathing and cardiovascular function. Studies demonstrate that mechanisms causing cardiorespiratory plasticity rely on intracellular signalling pathways that are activated by specific neurotransmitters. Peptides such as serotonin, PACAP and orexin are well-known for their physiological significance in regulating the cardiorespiratory system. Their receptor counterparts are present in cardiorespiratory centres of the brainstem medulla and spinal cord. Microglial cells are also important players in inducing plasticity. The phenotype and function of microglial cells can change based on the physiological state of the central nervous system. Here, we propose that in the autonomic nuclei of the ventral brainstem the relationship between neurotransmitters and neurokines, neurons and microglia determines the overall neural function of the central cardiorespiratory system.
Collapse
Affiliation(s)
- Seung Jae Kim
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Yeon Jae Kim
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zohra Kakall
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Melissa M J Farnham
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia
| | - Paul M Pilowsky
- Department of Physiology, Faculty of Medicine, The University of Sydney, Sydney, New South Wales 2006, Australia; The Heart Research Institute, 7 Eliza Street, Newtown, Sydney 2042, Australia.
| |
Collapse
|
4
|
Wang X, Guo R, Zhao W, Pilowsky PM. Medullary mediation of the laryngeal adductor reflex: A possible role in sudden infant death syndrome. Respir Physiol Neurobiol 2016; 226:121-7. [PMID: 26774498 DOI: 10.1016/j.resp.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
Abstract
The laryngeal adductor reflex (LAR) is a laryngeal protective reflex. Vagal afferent polymodal sensory fibres that have cell bodies in the nodose ganglion, originate in the sub-glottal area of the larynx and upper trachea. These polymodal sensory fibres respond to mechanical or chemical stimuli. The central axons of these sensory vagal neurons terminate in the dorsolateral subnuclei of the tractus solitarius in the medulla oblongata. The LAR is a critical, reflex in the pathways that play a protective role in the process of ventilation, and the sychronisation of ventilation with other activities that are undertaken by the oropharyngeal systems including: eating, speaking and singing. Failure of the LAR to operate properly at any time after birth can lead to SIDS, pneumonia or death. Despite the critical nature of this reflex, very little is known about the central pathways and neurotransmitters involved in the management of the LAR and any disorders associated with its failure to act properly. Here, we review current knowledge concerning the medullary nuclei and neurochemicals involved in the LAR and propose a potential neural pathway that may facilitate future SIDS research.
Collapse
Affiliation(s)
- Xiaolu Wang
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruichen Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjing Zhao
- Heart Research Institute, University of Sydney,7 Eliza St., Newtown, Australia
| | - Paul M Pilowsky
- Heart Research Institute, University of Sydney,7 Eliza St., Newtown, Australia.
| |
Collapse
|
5
|
Zhao WJ, Sun QJ, Guo RC, Pilowsky PM. Catecholamine inputs to expiratory laryngeal motoneurons in rats. J Comp Neurol 2014; 523:381-90. [PMID: 25224923 DOI: 10.1002/cne.23677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Many respiration-related interneurons and motoneurons receive a catecholaminergic input, but the extent and distribution of this input to recurrent laryngeal motoneurons that innervate intrinsic muscles of the larynx are not clear. In the present study, we examined the catecholaminergic input to expiratory laryngeal motoneurons in the caudal nucleus ambiguus by combining intracellular labeling of single identified motoneurons, with immunohistochemistry to reveal tyrosine hydroxylase immunoreactive (catecholaminergic) terminal varicosities. Close appositions were found between the two structures, with 18 ± 5 close appositions per motoneuron (n = 7). Close appositions were more frequently observed on distal rather than proximal dendrites. Axosomatic appositions were not seen. In order to determine the source of this input, microinjections of cholera toxin B subunit (1%, 20 nl) were made into the caudal nucleus ambiguus. Retrogradely labeled neurons, located in the ipsilateral nucleus tractus solitarius and the area postrema, were tyrosine hydroxylase-positive. Our results not only demonstrate details of the extent and distribution of potential catecholamine inputs to the expiratory laryngeal motoneuron, but further indicate that the inputs, at least in part, originate from the dorsomedial medulla, providing a potential anatomical basis for previously reported catecholaminergic effects on the laryngeal adductor reflex.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | | | | | | |
Collapse
|
6
|
Bautista TG, Sun QJ, Zhao WJ, Pilowsky PM. Cholinergic inputs to laryngeal motoneurons functionally identified in vivo in rat: a combined electrophysiological and microscopic study. J Comp Neurol 2011; 518:4903-16. [PMID: 21031558 DOI: 10.1002/cne.22495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The intrinsic laryngeal muscles are differentially modulated during respiration as well as other states and behaviors such as hypocapnia and sleep. Previous anatomical and pharmacological studies indicate a role for acetylcholine at the level of the nucleus ambiguus in the modulation of laryngeal motoneuron (LMN) activity. The present study investigated the anatomical nature of cholinergic input to inspiratory- (ILM) and expiratory-modulated (ELM) laryngeal motoneurons in the loose formation of the nucleus ambiguus. Using combined in vivo intracellular recording, dye filling, and immunohistochemistry, we demonstrate that LMNs identified in Sprague-Dawley rat receive several close appositions from vesicular acetylcholine transporter-immunoreactive (VAChT-ir) boutons. ELMs receive a significantly greater number of close appositions (mean ± standard deviation [SD]: 47 ± 11; n = 5) than ILMs (32 ± 9; n = 8; t-test P < 0.05). For both LMN types, more close appositions were observed on the cell soma and proximal dendrites compared to distal dendrites (two-way analysis of variance [ANOVA], P < 0.0001). Using fluorescence confocal microscopy, almost 90% of VAChT-ir close appositions (n = 45 boutons on n = 4 ELMs) were colocalized with the synaptic marker synaptophysin. These results support a strong influence of cholinergic input on LMNs and may have implications in the differential modulation of laryngeal muscle activity.
Collapse
|
7
|
Zhao WJ, Sun QJ, Lung MSY, Birch D, Guo RC, Pilowsky PM. Substance P, tyrosine hydroxylase and serotonin terminals in the rat caudal nucleus ambiguus. Respir Physiol Neurobiol 2011; 178:337-40. [PMID: 21689789 DOI: 10.1016/j.resp.2011.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/23/2011] [Accepted: 06/03/2011] [Indexed: 01/18/2023]
Abstract
Substance P (SP), tyrosine hydroxylase (TH) and serotonin inputs onto laryngeal motoneurons (LMNs) are known to exist, but the distribution of their terminals in the caudal nucleus ambiguus (NA), remains unclear. Using immunofluorescence and confocal microscopy, we assessed simultaneously the distribution of SP, TH, serotonin and synaptophysin immunoreactive (ir) terminals in the caudal NA. SP, TH and serotonin-ir varicosities were considered to represent immunoreactive synapses if, using confocal microscopy, they were co-localized with the presynaptic protein, synaptophysin. Relative to the total number of synapses, we found only a modest number of SP, TH or serotonin-ir synaptic terminals in the caudal NA. The density of SP-ir synaptic terminals was higher than that of TH-ir and serotonin-ir synaptic terminals. Our results suggest that SP, TH, and serotonin-ir inputs may play only a modest role in regulating the activity of LMN. We conclude that SP, TH and serotonin are not always co-localized in terminals forming inputs with LMN and that they arise from separate subpopulations of neurons.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Adachi T, Huxtable AG, Fang X, Funk GD. Substance P Modulation of Hypoglossal Motoneuron Excitability During Development: Changing Balance Between Conductances. J Neurophysiol 2010; 104:854-72. [DOI: 10.1152/jn.00016.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although Substance P (SP) acts primarily through neurokinin 1 (NK1) receptors to increase the excitability of virtually all motoneurons (MNs) tested, the ontogeny of this transmitter system is not known for any MN pool. Hypoglossal (XII) MNs innervate tongue protruder muscles and participate in several behaviors that must be functional from birth including swallowing, suckling and breathing. We used immunohistochemistry, Western immunoblotting, and whole cell recording of XII MNs in brain stem slices from rats ranging in age from postnatal day zero (P0) to P23 to explore developmental changes in: NK1 receptor expression; currents evoked by SPNK1 (an NK1-selective SP receptor agonist) and; the efficacy of transduction pathways transforming ligand binding into channel modulation. Despite developmental reductions in XII MN NK1 receptor expression, SPNK1 current density remained constant at 6.1 ± 1.0 (SE) pA/pF. SPNK1 activated at least two conductances. Activation of a pH-insensitive Na+ conductance dominated in neonates (P0–P5), but its contribution fell from ∼80 to ∼55% in juveniles (P14–P23). SPNK1 also inhibited a pH-sensitive, two-pore domain K+ (TASK)-like K+ current. Its contribution increased developmentally. First, the density of this pH-sensitive K+ current doubled between P0 and P23. Second, SPNK1 did not affect this current in neonates, but reduced it by 20% at P7–P10 and 80% in juveniles. In addition, potentiation of repetitive firing was greatest in juveniles. These data establish that despite apparent reductions in NK1 receptor density, SP remains an important modulator of XII MN excitability throughout postnatal development due, in part, to increased expression of a pH-sensitive, TASK-like conductance.
Collapse
Affiliation(s)
- Tadafumi Adachi
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | - Adrianne G. Huxtable
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
| | - X. Fang
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
| | - Gregory D. Funk
- Department of Physiology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; and
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Pilowsky PM, Lung MSY, Spirovski D, McMullan S. Differential regulation of the central neural cardiorespiratory system by metabotropic neurotransmitters. Philos Trans R Soc Lond B Biol Sci 2009; 364:2537-52. [PMID: 19651655 DOI: 10.1098/rstb.2009.0092] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Central neurons in the brainstem and spinal cord are essential for the maintenance of sympathetic tone, the integration of responses to the activation of reflexes and central commands, and the generation of an appropriate respiratory motor output. Here, we will discuss work that aims to understand the role that metabotropic neurotransmitter systems play in central cardiorespiratory mechanisms. It is well known that blockade of glutamatergic, gamma-aminobutyric acidergic and glycinergic pathways causes major or even complete disruption of cardiorespiratory systems, whereas antagonism of other neurotransmitter systems barely affects circulation or ventilation. Despite the lack of an 'all-or-none' role for metabotropic neurotransmitters, they are nevertheless significant in modulating the effects of central command and peripheral adaptive reflexes. Finally, we propose that a likely explanation for the plethora of neurotransmitters and their receptors on cardiorespiratory neurons is to enable differential regulation of outputs in response to reflex inputs, while at the same time maintaining a tonic level of sympathetic activity that supports those organs that significantly autoregulate their blood supply, such as the heart, brain, retina and kidney. Such an explanation of the data now available enables the generation of many new testable hypotheses.
Collapse
Affiliation(s)
- Paul M Pilowsky
- Australian School of Advanced Medicine, Dow-Corning Building, Level 1, 3 Innovation Road, Macquarie University, 2109 NSW, Australia.
| | | | | | | |
Collapse
|
10
|
Sun QJ, Berkowitz RG, Pilowsky PM. GABAA mediated inhibition and post-inspiratory pattern of laryngeal constrictor motoneurons in rat. Respir Physiol Neurobiol 2008; 162:41-7. [DOI: 10.1016/j.resp.2008.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 11/28/2022]
|
11
|
Abstract
Similar to gastrointestinal symptoms of eosinophilic esophagitis (EE), symptoms of otorhinolaryngologic disease associated with EE often are refractory to traditional treatment of gastroesophageal reflux disease. Patient demographics and characteristics often are similar. Clinicians must maintain a high index of suspicion to accurately diagnose and manage airway findings related to esophagitis. Team collaboration between otolaryngologists, allergists, and gastroenterologists will assure the best treatment in this select group of predisposed patients.
Collapse
|
12
|
Greer JJ, Funk GD. Perinatal development of respiratory motoneurons. Respir Physiol Neurobiol 2005; 149:43-61. [PMID: 15951250 DOI: 10.1016/j.resp.2005.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/09/2005] [Accepted: 03/09/2005] [Indexed: 01/19/2023]
Abstract
Breathing movements require the coordinated recruitment of cranial and spinal motoneurons innervating muscles of the upper airway and ribcage. A significant part of respiratory motoneuron development and maturation occurs prenatally to support the generation of fetal breathing movements in utero and sustained breathing at birth. Postnatally, motoneuron properties are further refined and match changes in the maturing respiratory musculoskeletal system. In this review, we outline developmental changes in key respiratory motoneuronal populations occurring from the time of motoneuron birth in the embryo through the postnatal period. We will also bring attention to major deficiencies in the current knowledge of perinatal respiratory motoneuron development. To date, our understanding of processes occurring during the prenatal period comes primarily from analysis of phrenic motoneurons (PMNs), whereas information about postnatal development derives largely from studies of PMN and hypoglossal motoneuron properties.
Collapse
Affiliation(s)
- John J Greer
- Department of Physiology, Division of Neuroscience, 513 HMRC, Perinatal Research Centre, University of Alberta, Edmonton, Alta., Canada T6G 2S2.
| | | |
Collapse
|
13
|
Ludlow CL. Recent advances in laryngeal sensorimotor control for voice, speech and swallowing. Curr Opin Otolaryngol Head Neck Surg 2004; 12:160-5. [PMID: 15167023 DOI: 10.1097/01.moo.0000120302.58882.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article reviews advances in knowledge on laryngeal sensorimotor control affecting the assessment, understanding, and treatment of laryngeal motor control disorders in voice, speech, and swallowing. Three topics are covered: new knowledge on laryngeal innervation and central nervous system control from basic research studies, the role of laryngeal sensation in normal swallowing and dysphagia in patients, and new approaches to the restoration of laryngeal motor control after recurrent laryngeal nerve disorders. RECENT FINDINGS A significant advance this year was tracing the efferent pathways from the cortex to the brainstem in monkeys. This provided new information on subcortical and brainstem connections in the laryngeal efferent pathways. Laryngeal sensory feedback continued to receive attention, and the role of sensory feedback in the control of the pharyngeal phase of swallowing is now well established. Further developments in neuromotor monitoring of the recurrent laryngeal nerve during thyroidectomy were seen, and a large case series recommended that these techniques become standard practice for surgery for thyroid benign recurrence or malignancy. Finally, the first tissue engineering papers in the field of vocal fold tissue and nerve restoration were published this year, beginning an exciting new approach to restoration of laryngeal motor control. SUMMARY Considerable attention has been given to laryngeal muscle physiology, denervation, and sensation in neurolaryngology. Relatively limited understanding is available regarding the central nervous system integrative control of laryngeal function for speech, respiration, and swallowing.
Collapse
Affiliation(s)
- Christy L Ludlow
- Laryngeal and Speech Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892-1416, USA.
| |
Collapse
|