1
|
Graboski AL, Kowalewski ME, Simpson JB, Cao X, Ha M, Zhang J, Walton WG, Flaherty DP, Redinbo MR. Mechanism-based inhibition of gut microbial tryptophanases reduces serum indoxyl sulfate. Cell Chem Biol 2023; 30:1402-1413.e7. [PMID: 37633277 PMCID: PMC10702206 DOI: 10.1016/j.chembiol.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
Indoxyl sulfate is a microbially derived uremic toxin that accumulates in late-stage chronic kidney disease and contributes to both renal and cardiovascular toxicity. Indoxyl sulfate is generated by the metabolism of indole, a compound created solely by gut microbial tryptophanases. Here, we characterize the landscape of tryptophanase enzymes in the human gut microbiome and find remarkable structural and functional similarities across diverse taxa. We leverage this homology through a medicinal chemistry campaign to create a potent pan-inhibitor, (3S) ALG-05, and validate its action as a transition-state analog. (3S) ALG-05 successfully reduces indole production in microbial culture and displays minimal toxicity against microbial and mammalian cells. Mice treated with (3S) ALG-05 show reduced cecal indole and serum indoxyl sulfate levels with minimal changes in other tryptophan-metabolizing pathways. These studies present a non-bactericidal pan-inhibitor of gut microbial tryptophanases with potential promise for reducing indoxyl sulfate in chronic kidney disease.
Collapse
Affiliation(s)
- Amanda L Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark E Kowalewski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xufeng Cao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Mary Ha
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jianan Zhang
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - William G Walton
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew R Redinbo
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Khaova EA, Kashevarova NM, Tkachenko AG. Ribosome Hibernation: Molecular Strategy of Bacterial Survival (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822030061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
A bi-enzymatic cascade to yield pyruvate as co-substrate for l-tyrosine production. Appl Microbiol Biotechnol 2020; 104:10005-10018. [DOI: 10.1007/s00253-020-10975-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 11/25/2022]
|
4
|
Latimer LN, Russ ZN, Lucas J, Dueber JE. Exploration of Acetylation as a Base-Labile Protecting Group in Escherichia coli for an Indigo Precursor. ACS Synth Biol 2020; 9:2775-2783. [PMID: 32886882 DOI: 10.1021/acssynbio.0c00297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biochemical protecting groups are observed in natural metabolic pathways to control reactivity and properties of chemical intermediates; similarly, they hold promise as a tool for metabolic engineers to achieve the same goals. Protecting groups come with costs: lower yields from carbon, metabolic load to the production host, deprotection catalyst costs and kinetics limitations, and wastewater treatment of the group. Compared to glycosyl biochemical protection, such as glucosyl groups, acetylation can mitigate each of these costs. As an example application where these benefits could be valuable, we explored acetylation protection of indoxyl, the reactive precursor to the clothing dye, indigo. First, we demonstrated denim dyeing with chemically sourced indoxyl acetate by deprotection with base, showing results comparable to industry-standard denim dyeing. Second, we modified an Escherichia coli production host for improved indoxyl acetate stability by the knockout of 14 endogenous hydrolases. Cumulatively, these knockouts yielded a 67% reduction in the indoxyl acetate hydrolysis rate from 0.22 mmol/g DCW/h to 0.07 mmol/g DCW/h. To biosynthesize indoxyl acetate, we identified three promiscuous acetyltransferases which acetylate indoxyl in vivo. Indoxyl acetate titer, while low, was improved 50%, from 43 μM to 67 μM, in the hydrolase knockout strain compared to wild-type E. coli. Unfortunately, low millimolar concentrations of indoxyl acetate proved to be toxic to the E. coli production host; however, the principle of acetylation as a readily cleavable and low impact biochemical protecting group and the engineered hydrolase knockout production host should prove useful for other metabolic products.
Collapse
Affiliation(s)
- Luke N. Latimer
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zachary N. Russ
- The UC Berkeley & UCSF Graduate Program in Bioengineering, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - James Lucas
- The UC Berkeley & UCSF Graduate Program in Bioengineering, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - John E. Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Irons JL, Hodge-Hanson K, Downs DM. RidA Proteins Protect against Metabolic Damage by Reactive Intermediates. Microbiol Mol Biol Rev 2020; 84:e00024-20. [PMID: 32669283 PMCID: PMC7373157 DOI: 10.1128/mmbr.00024-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Rid (YjgF/YER057c/UK114) protein superfamily was first defined by sequence homology with available protein sequences from bacteria, archaea, and eukaryotes (L. Parsons, N. Bonander, E. Eisenstein, M. Gilson, et al., Biochemistry 42:80-89, 2003, https://doi.org/10.1021/bi020541w). The archetypal subfamily, RidA (reactive intermediate deaminase A), is found in all domains of life, with the vast majority of free-living organisms carrying at least one RidA homolog. In over 2 decades, close to 100 reports have implicated Rid family members in cellular processes in prokaryotes, yeast, plants, and mammals. Functional roles have been proposed for Rid enzymes in amino acid biosynthesis, plant root development and nutrient acquisition, cellular respiration, and carcinogenesis. Despite the wealth of literature and over a dozen high-resolution structures of different RidA enzymes, their biochemical function remained elusive for decades. The function of the RidA protein was elucidated in a bacterial model system despite (i) a minimal phenotype of ridA mutants, (ii) the enzyme catalyzing a reaction believed to occur spontaneously, and (iii) confusing literature on the pleiotropic effects of RidA homologs in prokaryotes and eukaryotes. Subsequent work provided the physiological framework to support the RidA paradigm in Salmonella enterica by linking the phenotypes of mutants lacking ridA to the accumulation of the reactive metabolite 2-aminoacrylate (2AA), which damaged metabolic enzymes. Conservation of enamine/imine deaminase activity of RidA enzymes from all domains raises the likelihood that, despite the diverse phenotypes, the consequences when RidA is absent are due to accumulated 2AA (or a similar reactive enamine) and the diversity of metabolic phenotypes can be attributed to differences in metabolic network architecture. The discovery of the RidA paradigm in S. enterica laid a foundation for assessing the role of Rid enzymes in diverse organisms and contributed fundamental lessons on metabolic network evolution and diversity in microbes. This review describes the studies that defined the conserved function of RidA, the paradigm of enamine stress in S. enterica, and emerging studies that explore how this paradigm differs in other organisms. We focus primarily on the RidA subfamily, while remarking on our current understanding of the other Rid subfamilies. Finally, we describe the current status of the field and pose questions that will drive future studies on this widely conserved protein family to provide fundamental new metabolic information.
Collapse
Affiliation(s)
- Jessica L Irons
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Pyridoxal 5'-Phosphate-Dependent Enzymes at the Crossroads of Host-Microbe Tryptophan Metabolism. Int J Mol Sci 2020; 21:ijms21165823. [PMID: 32823705 PMCID: PMC7461572 DOI: 10.3390/ijms21165823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
The chemical processes taking place in humans intersects the myriad of metabolic pathways occurring in commensal microorganisms that colonize the body to generate a complex biochemical network that regulates multiple aspects of human life. The role of tryptophan (Trp) metabolism at the intersection between the host and microbes is increasingly being recognized, and multiple pathways of Trp utilization in either direction have been identified with the production of a wide range of bioactive products. It comes that a dysregulation of Trp metabolism in either the host or the microbes may unbalance the production of metabolites with potential pathological consequences. The ability to redirect the Trp flux to restore a homeostatic production of Trp metabolites may represent a valid therapeutic strategy for a variety of pathological conditions, but identifying metabolic checkpoints that could be exploited to manipulate the Trp metabolic network is still an unmet need. In this review, we put forward the hypothesis that pyridoxal 5′-phosphate (PLP)-dependent enzymes, which regulate multiple pathways of Trp metabolism in both the host and in microbes, might represent critical nodes and that modulating the levels of vitamin B6, from which PLP is derived, might represent a metabolic checkpoint to re-orienteer Trp flux for therapeutic purposes.
Collapse
|
7
|
Han H, Zeng W, Zhang G, Zhou J. Active tyrosine phenol-lyase aggregates induced by terminally attached functional peptides in Escherichia coli. J Ind Microbiol Biotechnol 2020; 47:563-571. [PMID: 32737623 PMCID: PMC7508748 DOI: 10.1007/s10295-020-02294-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
The formation of inclusion bodies (IBs) without enzyme activity in bacterial research is generally undesirable. Researchers have attempted to recovery the enzyme activities of IBs, which are commonly known as active IBs. Tyrosine phenol-lyase (TPL) is an important enzyme that can convert pyruvate and phenol into 3,4-dihydroxyphenyl-L-alanine (L-DOPA) and IBs of TPL can commonly occur. To induce the correct folding and recover the enzyme activity of the IBs, peptides, such as ELK16, DKL6, L6KD, ELP10, ELP20, L6K2, EAK16, 18A, and GFIL16, were fused to the carboxyl terminus of TPL. The results showed that aggregate particles of TPL-DKL6, TPL-ELP10, TPL-EAK16, TPL-18A, and TPL-GFIL16 improved the enzyme activity by 40.9%, 50.7%, 48.9%, 86.6%, and 97.9%, respectively. The peptides TPL-DKL6, TPL-EAK16, TPL-18A, and TPL-GFIL16 displayed significantly improved thermostability compared with TPL. L-DOPA titer of TPL-ELP10, TPL-EAK16, TPL-18A, and TPL-GFIL16, with cells reaching 37.8 g/L, 53.8 g/L, 37.5 g/L, and 29.1 g/L, had an improvement of 111%, 201%, 109%, and 63%, respectively. A higher activity and L-DOPA titer of the TPL-EAK16 could be valuable for its industrial application to biosynthesize L-DOPA.
Collapse
Affiliation(s)
- Hongmei Han
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
8
|
Han H, Zeng W, Du G, Chen J, Zhou J. Site-directed mutagenesis to improve the thermostability of tyrosine phenol-lyase. J Biotechnol 2020; 310:6-12. [PMID: 31926982 DOI: 10.1016/j.jbiotec.2020.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
3,4-Dihydroxyphenyl-L-alanine (L-DOPA) is the most important antiparkinsonian drug, and tyrosine phenol-lyase (TPL)-based enzyme catalysis process is one of the most adopted methods on industrial scale production. TPL activity and stability represent the rate-limiting step in L-DOPA synthesis. Here, 25 TPL mutants were predicted, and two were confirmed as exhibiting the highest L-DOPA production and named E313W and E313M. The L-DOPA production from E313W and E313M was 47.5 g/L and 62.1 g/L, which was 110.2 % and 174.8 % higher, respectively, than that observed from wild-type (WT) TPL. The Km of E313W and E313M showed no apparent decrease, whereas the kcat of E313W and E313M improved by 45.5 % and 36.4 %, respectively, relative to WT TPL. Additionally, E313W and E313M displayed improved thermostability, a higher melting temperature, and enhanced affinity between for pyridoxal-5'-phosphate. Structural analysis of the mutants suggested increased stability of the N-terminal region via enhanced interactions between the mutated residues and H317. Application of these mutants in a substrate fed-batch strategy as whole-cell biocatalysts allows realization of a cost-efficient short fermentation period resulting in high L-DOPA yield.
Collapse
Affiliation(s)
- Hongmei Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Kanemitsu Y, Tsukamoto H, Matsumoto Y, Nozawa-Kumada K, Kondo Y, Abe T, Tomioka Y. Generation and Characterization of Anti-phenyl Sulfate Monoclonal Antibodies and a Potential Use for Phenyl Sulfate Analysis in Human Blood. Biol Pharm Bull 2018; 41:1170-1177. [PMID: 30068866 DOI: 10.1248/bpb.b17-00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients with chronic kidney disease (CKD) have increased blood levels of phenyl sulfate (PS), a circulating uremic toxin. In this study, we produced anti-PS monoclonal antibodies (mAbs) and characterized their cross-reactivity to structural PS analogs. To induce PS-specific mAbs, we synthesized 4-mercaptophenyl sulfate with a sulfhydryl group at the para-position of PS and conjugated it to carrier proteins via bifunctional linkers. Using these PS conjugates as immunogens and as antigens for enzyme-linked immunosorbent assay (ELISA) screening, we produced by a hybridoma method two novel mAbs (YK33.1 and YKS19.2) that react with PS conjugates independent of carrier and linker structures. Although all of the PS analogs tested, with the exception of indoxyl sulfate, were cross-reactive to both mAbs in phosphate buffered saline (PBS), PS specificity for YKS19.2 was enhanced in human plasma and serum. YKS19.2 mAb was cross-reactive only with o-cresyl sulfate, which is absent in human blood. PS sensitivity for YKS19.2 mAb increased to an IC50 of 10.4 µg/mL when 0.1% Tween 20 was added in a primary competitive reaction. To explore potential clinical applications, we determined concentrations of PS in serum samples from 19 CKD patients by inhibition ELISA using YKS19.2 mAb and compared them to those found using an LC-MS/MS method. A good correlation was observed between each value (R2=0.825). Therefore, the unique antigen specificity of YKS19.2 mAb could be useful for prescreening of patients with accumulated PS or for comprehensive analysis of uremic toxins that have a PS-like structure.
Collapse
Affiliation(s)
- Yoshitomi Kanemitsu
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Kanako Nozawa-Kumada
- Laboratory of Molecular Transformation, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yoshinori Kondo
- Laboratory of Molecular Transformation, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takaaki Abe
- Department of Medical Science, Graduate School of Biomedical Engineering, Tohoku University.,Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine, Tohoku University
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
10
|
Evolution of enzymes with new specificity by high-throughput screening using DmpR-based genetic circuits and multiple flow cytometry rounds. Sci Rep 2018; 8:2659. [PMID: 29422524 PMCID: PMC5805759 DOI: 10.1038/s41598-018-20943-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/26/2018] [Indexed: 11/12/2022] Open
Abstract
Genetic circuit-based biosensors are useful in detecting target metabolites or in vivo enzymes using transcription factors (Tx) as a molecular switch to express reporter signals, such as cellular fluorescence and antibiotic resistance. Herein, a phenol-detecting Tx (DmpR) was employed as a critical tool for enzyme engineering, specifically for the rapid analysis of numerous mutants with multiple mutations at the active site of tryptophan-indole lyase (TIL, EC 4.1.99.1). Cellular fluorescence was monitored cell-by-cell using flow cytometry to detect the creation of phenolic compounds by a new tyrosine-phenol-lyase (TPL, EC 4.1.99.2). In the TIL scaffold, target amino acids near the indole ring (Asp137, Phe304, Val394, Ile396 and His463) were mutated randomly to construct a large diversity of specificity variations. Collection of candidate positives by cell sorting using flow cytometry and subsequent shuffling of beneficial mutations identified a critical hit with four mutations (D137P, F304D, V394L, and I396R) in the TIL sequence. The variant displayed one-thirteenth the level of TPL activity, compared with native TPLs, and completely lost the original TIL activity. The findings demonstrate that hypersensitive, Tx-based biosensors could be useful critically to generate new activity from a related template, which would alleviate the current burden to high-throughput screening.
Collapse
|
11
|
Kikuchi M, Ueno M, Itoh Y, Suda W, Hattori M. Uremic Toxin-Producing Gut Microbiota in Rats with Chronic Kidney Disease. Nephron Clin Pract 2016; 135:51-60. [PMID: 27701177 DOI: 10.1159/000450619] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/31/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In patients with chronic kidney disease (CKD), many metabolites of gut microbiota retain in the body as uremic toxins (UTs). However, the kinds of bacteria producing UTs are rarely discussed. METHODS We analyzed UT production and the composition of gut microbiota in CKD rats and cecectomized rats. AST-120, a spherical carbon adsorbent, was administrated to evaluate how the precursors of UT affect gut microbiota. Serum and urine levels of UTs were quantified by liquid chromatography/electrospray ionization-tandem mass spectrometry. Gut microbiota were analyzed using 454-pyrosequencing of the 16S rRNA gene. Operational taxonomic unit (OTU) clustering and UniFrac analysis were performed to compare gut microbiota among the groups. RESULTS Serum and urine levels of indoxyl sulfate and phenyl sulfate were higher in CKD versus control rats (p < 0.05). AST-120 administration decreased UT production (p < 0.01) and changed overall gut microbiota composition in CKD rats. UT urinary excretion and gut microbiota composition changed in cecectomized rats, with the relative abundance of Clostridia- and Bacteroidia-affiliated species being significantly reduced (p < 0.01). We identified candidate indole- and phenol-producing intestinal microbiota, 3 Clostridia, and 2 Bacteroidia. These OTUs have a tryptophanase/tyrosine phenol-lyase gene in the closest sequenced genome out of the OTUs declined following cecectomy. CONCLUSION Our data suggest that UT production is correlated with a subset of indigenous gut microbiota. However, UT may be induced by other non-symbiotic microbiota that are influenced by factors other than microbiota populations. The relationship between specific microbiota and UTs in patients requires further clarification.
Collapse
Affiliation(s)
- Mami Kikuchi
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Tokyo, Japan
| | | | | | | | | |
Collapse
|
12
|
Green K, Qasim N, Gdaelvsky G, Kogan A, Goldgur Y, Parola AH, Lotan O, Almog O. A structural view of the dissociation of Escherichia coli tryptophanase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2364-71. [PMID: 26627645 DOI: 10.1107/s139900471501799x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/25/2015] [Indexed: 01/03/2023]
Abstract
Tryptophanase (Trpase) is a pyridoxal 5'-phosphate (PLP)-dependent homotetrameric enzyme which catalyzes the degradation of L-tryptophan. Trpase is also known for its cold lability, which is a reversible loss of activity at low temperature (2°C) that is associated with the dissociation of the tetramer. Escherichia coli Trpase dissociates into dimers, while Proteus vulgaris Trpase dissociates into monomers. As such, this enzyme is an appropriate model to study the protein-protein interactions and quaternary structure of proteins. The aim of the present study was to understand the differences in the mode of dissociation between the E. coli and P. vulgaris Trpases. In particular, the effect of mutations along the molecular axes of homotetrameric Trpase on its dissociation was studied. To answer this question, two groups of mutants of the E. coli enzyme were created to resemble the amino-acid sequence of P. vulgaris Trpase. In one group, residues 15 and 59 that are located along the molecular axis R (also termed the noncatalytic axis) were mutated. The second group included a mutation at position 298, located along the molecular axis Q (also termed the catalytic axis). Replacing amino-acid residues along the R axis resulted in dissociation of the tetramers into monomers, similar to the P. vulgaris Trpase, while replacing amino-acid residues along the Q axis resulted in dissociation into dimers only. The crystal structure of the V59M mutant of E. coli Trpase was also determined in its apo form and was found to be similar to that of the wild type. This study suggests that in E. coli Trpase hydrophobic interactions along the R axis hold the two monomers together more strongly, preventing the dissociation of the dimers into monomers. Mutation of position 298 along the Q axis to a charged residue resulted in tetramers that are less susceptible to dissociation. Thus, the results indicate that dissociation of E. coli Trpase into dimers occurs along the molecular Q axis.
Collapse
Affiliation(s)
- Keren Green
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| | - Nasrin Qasim
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| | - Garik Gdaelvsky
- Department of Chemistry, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| | - Anna Kogan
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Abraham H Parola
- Department of Chemistry, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| | - Ofra Lotan
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| | - Orna Almog
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, PO Box 105, Beer Sheva 84105, Israel
| |
Collapse
|
13
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
14
|
Abstract
Leinamycin (LNM) is a sulfur-containing antitumor antibiotic featuring an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety is essential for LNM's antitumor activity, by virtue of its ability to generate an episulfonium ion intermediate capable of alkylating DNA. We have previously cloned and sequenced the lnm gene cluster from Streptomyces atroolivaceus S-140. In vivo and in vitro characterizations of the LNM biosynthetic machinery have since established that: (i) the 18-membered macrolactam backbone is synthesized by LnmP, LnmQ, LnmJ, LnmI, and LnmG, (ii) the alkyl branch at C-3 of LNM is installed by LnmK, LnmL, LnmM, and LnmF, and (iii) leinamycin E1 (LNM E1), bearing a thiol moiety at C-3, is the nascent product of the LNM hybrid nonribosomal peptide synthetase (NRPS)-acyltransferase (AT)-less type I polyketide synthase (PKS). Sulfur incorporation at C-3 of LNM E1, however, has not been addressed. Here we report that: (i) the bioinformatics analysis reveals a pyridoxal phosphate (PLP)-dependent domain, we termed cysteine lyase (SH) domain (LnmJ-SH), within PKS module-8 of LnmJ; (ii) the LnmJ-SH domain catalyzes C-S bond cleavage by using l-cysteine and l-cysteine S-modified analogs as substrates through a PLP-dependent β-elimination reaction, establishing l-cysteine as the origin of sulfur at C-3 of LNM; and (iii) the LnmJ-SH domain, sharing no sequence homology with any other enzymes catalyzing C-S bond cleavage, represents a new family of PKS domains that expands the chemistry and enzymology of PKSs and might be exploited to incorporate sulfur into polyketide natural products by PKS engineering.
Collapse
|
15
|
Kogan A, Raznov L, Gdalevsky GY, Cohen-Luria R, Almog O, Parola AH, Goldgur Y. Structures of Escherichia coli tryptophanase in holo and 'semi-holo' forms. Acta Crystallogr F Struct Biol Commun 2015; 71:286-90. [PMID: 25760702 PMCID: PMC4356303 DOI: 10.1107/s2053230x15000850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
Two crystal forms of Escherichia coli tryptophanase (tryptophan indole-lyase, Trpase) were obtained under the same crystallization conditions. Both forms belonged to the same space group P43212 but had slightly different unit-cell parameters. The holo crystal form, with pyridoxal phosphate (PLP) bound to Lys270 of both polypeptide chains in the asymmetric unit, diffracted to 2.9 Å resolution. The second crystal form diffracted to 3.2 Å resolution. Of the two subunits in the asymmetric unit, one was found in the holo form, while the other appeared to be in the apo form in a wide-open conformation with two sulfate ions bound in the vicinity of the active site. The conformation of all holo subunits is the same in both crystal forms. The structures suggest that Trpase is flexible in the apo form. Its conformation partially closes upon binding of PLP. The closed conformation might correspond to the enzyme in its active state with both cofactor and substrate bound in a similar way as in tyrosine phenol-lyase.
Collapse
Affiliation(s)
- Anna Kogan
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Leah Raznov
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Garik Y. Gdalevsky
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Orna Almog
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Abraham H. Parola
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- New York University Shanghai, Shanghai 200122, People’s Republic of China
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
16
|
Schiroli D, Ronda L, Peracchi A. Kinetic characterization of the human O-phosphoethanolamine phospho-lyase reveals unconventional features of this specialized pyridoxal phosphate-dependent lyase. FEBS J 2014; 282:183-99. [PMID: 25327712 DOI: 10.1111/febs.13122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022]
Abstract
Human O-phosphoethanolamine (PEA) phospho-lyase is a pyridoxal 5'-phosphate (PLP) dependent enzyme that catalyzes the degradation of PEA to acetaldehyde, phosphate and ammonia. Physiologically, the enzyme is involved in phospholipid metabolism and is expressed mainly in the brain, where its expression becomes dysregulated in the course of neuropsychiatric diseases. Mechanistically, PEA phospho-lyase shows a remarkable substrate selectivity, strongly discriminating against other amino compounds structurally similar to PEA. Herein, we studied the enzyme under steady-state and pre-steady-state conditions, analyzing its kinetic features and getting insights into the factors that contribute to its specificity. The pH dependence of the catalytic parameters and the pattern of inhibition by the product phosphate and by other anionic compounds suggest that the active site of PEA phospho-lyase is optimized to bind dianionic groups and that this is a prime determinant of the enzyme specificity towards PEA. Single- and multiple-wavelength stopped-flow studies show that upon reaction with PEA the main absorption band of PLP (λmax = 412 nm) rapidly blue-shifts to ~ 400 nm. Further experiments suggest that the newly formed and rather stable 400-nm species most probably represents a Michaelis (noncovalent) complex of PEA with the enzyme. Accumulation of such an early intermediate during turnover is unusual for PLP-dependent enzymes and appears counterproductive for absolute catalytic performance, but it can contribute to optimize substrate specificity. PEA phospho-lyase may hence represent a case of selectivity-efficiency tradeoff. In turn, the strict specificity of the enzyme seems important to prevent inactivation by other amines, structurally resembling PEA, that occur in the brain.
Collapse
Affiliation(s)
- Davide Schiroli
- Department of Life Sciences, Laboratory of Biochemistry, Molecular Biology and Bioinformatics, University of Parma, Italy
| | | | | |
Collapse
|
17
|
Inhibition of Escherichia coli tryptophan indole-lyase by tryptophan homologues. Arch Biochem Biophys 2014; 560:20-6. [DOI: 10.1016/j.abb.2014.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 12/31/2022]
|
18
|
Hiyama T, Sato T, Imanaka T, Atomi H. The tryptophan synthase β-subunit paralogs TrpB1 and TrpB2 in Thermococcus kodakarensis are both involved in tryptophan biosynthesis and indole salvage. FEBS J 2014; 281:3113-25. [PMID: 24835339 DOI: 10.1111/febs.12845] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/01/2014] [Accepted: 05/13/2014] [Indexed: 11/26/2022]
Abstract
The last two steps of l-tryptophan (Trp) biosynthesis are catalyzed by Trp synthase, a heterotetramer composed of TrpA and TrpB. TrpB catalyzes the condensation of indole, synthesized by TrpA, and serine to Trp. In the hyperthermophilic archaeon Thermococcus kodakarensis, trpA and trpB (trpB1) are located adjacently in the trpCDEGFB1A operon. Interestingly, several organisms possess a second trpB gene (trpB2) encoding TrpB2, located outside of the trp operon in T. kodakarensis. Until now, the physiological function of trpB2 has not been examined genetically. In the present study, we report the biochemical and physiological analyses of TrpB2 from T. kodakarensis. Kinetic analysis indicated that TrpB2 catalyzed the TrpB reaction but did not interact with TrpA as in the case of TrpB1. When growth phenotypes were examined for gene disruption strains, the double-deletion mutant (ΔtrpB1ΔtrpB2) displayed Trp auxotrophy, whereas individual single mutants (ΔtrpB1 and ΔtrpB2 strains) did not. It has been proposed previously that, in Thermotoga maritima, TrpB2 provides an alternate route to generate Trp from serine and free indole (indole salvage). To accurately examine the capacity of TrpB1 and TrpB2 in Trp synthesis via indole salvage, we constructed ΔtrpEB1 and ΔtrpEB2 strains using strain KUW1 (ΔpyrFΔtrpE) as a host, eliminating the route for endogenous indole synthesis. Indole complemented the Trp auxotrophies of ΔtrpEB1 (ΔpyrFΔtrpEΔtrpB1) and ΔtrpEB2 (ΔpyrFΔtrpEΔtrpB2) to similar levels. The results indicate that TrpB1 and TrpB2 both contribute to Trp biosynthesis in T. kodakarensis and can utilize free indole, and that indole salvage does not necessarily rely on TrpB2 to a greater extent.
Collapse
Affiliation(s)
- Takayoshi Hiyama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | | | | | | |
Collapse
|
19
|
Milano T, Paiardini A, Grgurina I, Pascarella S. Type I pyridoxal 5'-phosphate dependent enzymatic domains embedded within multimodular nonribosomal peptide synthetase and polyketide synthase assembly lines. BMC STRUCTURAL BIOLOGY 2013. [PMID: 24148833 DOI: 10.1186/1472‐6807‐13‐26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Pyridoxal 5'-phosphate (PLP)-dependent enzymes of fold type I, the most studied structural class of the PLP-dependent enzyme superfamily, are known to exist as stand-alone homodimers or homotetramers. These enzymes have been found also embedded in multimodular and multidomain assembly lines involved in the biosynthesis of polyketides (PKS) and nonribosomal peptides (NRPS). The aim of this work is to provide a proteome-wide view of the distribution and characteristics of type I domains covalently integrated in these assemblies in prokaryotes. RESULTS An ad-hoc Hidden Markov profile was calculated using a sequence alignment derived from a multiple structural superposition of distantly related PLP-enzymes of fold type I. The profile was utilized to scan the sequence databank and to collect the proteins containing at least one type I domain linked to a component of an assembly line in bacterial genomes. The domains adjacent to a carrier protein were further investigated. Phylogenetic analysis suggested the presence of four PLP-dependent families: Aminotran_3, Beta_elim_lyase and Pyridoxal_deC, occurring mainly within mixed NRPS/PKS clusters, and Aminotran_1_2 found mainly in PKS clusters. Sequence similarity to the reference PLP enzymes with solved structures ranged from 24 to 42% identity. Homology models were built for each representative type I domain and molecular docking simulations with putative substrates were carried out. Prediction of the protein-protein interaction sites evidenced that the surface regions of the type I domains embedded within multienzyme assemblies were different from those of the self-standing enzymes; these structural features appear to be required for productive interactions with the adjacent domains in a multidomain context. CONCLUSIONS This work provides a systematic view of the occurrence of type I domain within NRPS and PKS assembly lines and it predicts their structural characteristics using computational methods. Comparison with the corresponding stand-alone enzymes highlighted the common and different traits related to various aspects of their structure-function relationship. Therefore, the results of this work, on one hand contribute to the understanding of the functional and structural diversity of the PLP-dependent type I enzymes and, on the other, pave the way to further studies aimed at their applications in combinatorial biosynthesis.
Collapse
Affiliation(s)
| | | | | | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche "A, Rossi Fanelli", Sapienza - Università di Roma, Roma 00185, Italy.
| |
Collapse
|
20
|
Milano T, Paiardini A, Grgurina I, Pascarella S. Type I pyridoxal 5'-phosphate dependent enzymatic domains embedded within multimodular nonribosomal peptide synthetase and polyketide synthase assembly lines. BMC STRUCTURAL BIOLOGY 2013; 13:26. [PMID: 24148833 PMCID: PMC3870968 DOI: 10.1186/1472-6807-13-26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/14/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pyridoxal 5'-phosphate (PLP)-dependent enzymes of fold type I, the most studied structural class of the PLP-dependent enzyme superfamily, are known to exist as stand-alone homodimers or homotetramers. These enzymes have been found also embedded in multimodular and multidomain assembly lines involved in the biosynthesis of polyketides (PKS) and nonribosomal peptides (NRPS). The aim of this work is to provide a proteome-wide view of the distribution and characteristics of type I domains covalently integrated in these assemblies in prokaryotes. RESULTS An ad-hoc Hidden Markov profile was calculated using a sequence alignment derived from a multiple structural superposition of distantly related PLP-enzymes of fold type I. The profile was utilized to scan the sequence databank and to collect the proteins containing at least one type I domain linked to a component of an assembly line in bacterial genomes. The domains adjacent to a carrier protein were further investigated. Phylogenetic analysis suggested the presence of four PLP-dependent families: Aminotran_3, Beta_elim_lyase and Pyridoxal_deC, occurring mainly within mixed NRPS/PKS clusters, and Aminotran_1_2 found mainly in PKS clusters. Sequence similarity to the reference PLP enzymes with solved structures ranged from 24 to 42% identity. Homology models were built for each representative type I domain and molecular docking simulations with putative substrates were carried out. Prediction of the protein-protein interaction sites evidenced that the surface regions of the type I domains embedded within multienzyme assemblies were different from those of the self-standing enzymes; these structural features appear to be required for productive interactions with the adjacent domains in a multidomain context. CONCLUSIONS This work provides a systematic view of the occurrence of type I domain within NRPS and PKS assembly lines and it predicts their structural characteristics using computational methods. Comparison with the corresponding stand-alone enzymes highlighted the common and different traits related to various aspects of their structure-function relationship. Therefore, the results of this work, on one hand contribute to the understanding of the functional and structural diversity of the PLP-dependent type I enzymes and, on the other, pave the way to further studies aimed at their applications in combinatorial biosynthesis.
Collapse
Affiliation(s)
| | | | | | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche "A, Rossi Fanelli", Sapienza - Università di Roma, Roma 00185, Italy.
| |
Collapse
|
21
|
Flynn JM, Downs DM. In the absence of RidA, endogenous 2-aminoacrylate inactivates alanine racemases by modifying the pyridoxal 5'-phosphate cofactor. J Bacteriol 2013; 195:3603-9. [PMID: 23749972 PMCID: PMC3754577 DOI: 10.1128/jb.00463-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/31/2013] [Indexed: 11/20/2022] Open
Abstract
Members of the RidA (YjgF/YER057c/UK114) protein family are broadly conserved across the domains of life. In vitro, these proteins deaminate 3- or 4-carbon enamines that are generated as mechanistic intermediates of pyridoxal 5'-phosphate (PLP)-dependent serine/threonine dehydratases. The three-carbon enamine 2-aminoacrylate can inactivate some enzymes by forming a covalent adduct via a mechanism that has been well characterized in vitro. The biochemical activity of RidA suggested that the phenotypes of ridA mutant strains were caused by the accumulation of reactive enamine metabolites. The data herein show that in ridA mutant strains of Salmonella enterica, a stable 2-aminoacrylate (2-AA)/PLP adduct forms on the biosynthetic alanine racemase, Alr, indicating the presence of 2-aminoacrylate in vivo. This study confirms the deleterious effect of 2-aminoacrylate generated by metabolic enzymes and emphasizes the need for RidA to quench this reactive metabolite.
Collapse
Affiliation(s)
- Jeffrey M. Flynn
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | |
Collapse
|
22
|
Shimada A, Ozaki H. Flexible enantioselectivity of tryptophanase attributable to benzene ring in heterocyclic moiety of d-tryptophan. Life (Basel) 2012; 2:215-28. [PMID: 25382167 PMCID: PMC4187121 DOI: 10.3390/life2020215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/02/2012] [Accepted: 05/17/2012] [Indexed: 11/30/2022] Open
Abstract
The invariance principle of enzyme enantioselectivity must be absolute because it is absolutely essential to the homochiral biological world. Most enzymes are strictly enantioselective, and tryptophanase is one of the enzymes with extreme absolute enantioselectivity for L-tryptophan. Contrary to conventional knowledge about the principle, tryptophanase becomes flexible to catalyze D-tryptophan in the presence of diammonium hydrogenphosphate. Since D-amino acids are ordinarily inert or function as inhibitors even though they are bound to the active site, the inhibition behavior of D-tryptophan and several inhibitors involved in this process was examined in terms of kinetics to explain the reason for this flexible enantioselectivity in the presence of diammonium hydrogenphosphate. Diammonium hydrogenphosphate gave tryptophanase a small conformational change so that D-tryptophan could work as a substrate. As opposed to other D-amino acids, D-tryptophan is a very bulky amino acid with a benzene ring in its heterocyclic moiety, and so we suggest that this structural feature makes the catalysis of D-tryptophan degradation possible, consequently leading to the flexible enantioselectivity. The present results not only help to understand the mechanism of enzyme enantioselectivity, but also shed light on the origin of homochirality.
Collapse
Affiliation(s)
- Akihiko Shimada
- Sustainable Environmental Studies, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| | - Haruka Ozaki
- Sustainable Environmental Studies, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
23
|
Milić D, Demidkina TV, Faleev NG, Phillips RS, Matković-Čalogović D, Antson AA. Crystallographic snapshots of tyrosine phenol-lyase show that substrate strain plays a role in C-C bond cleavage. J Am Chem Soc 2011; 133:16468-76. [PMID: 21899319 PMCID: PMC3191766 DOI: 10.1021/ja203361g] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Indexed: 11/30/2022]
Abstract
The key step in the enzymatic reaction catalyzed by tyrosine phenol-lyase (TPL) is reversible cleavage of the Cβ-Cγ bond of L-tyrosine. Here, we present X-ray structures for two enzymatic states that form just before and after the cleavage of the carbon-carbon bond. As for most other pyridoxal 5'-phosphate-dependent enzymes, the first state, a quinonoid intermediate, is central for the catalysis. We captured this relatively unstable intermediate in the crystalline state by introducing substitutions Y71F or F448H in Citrobacter freundii TPL and briefly soaking crystals of the mutant enzymes with a substrate 3-fluoro-L-tyrosine followed by flash-cooling. The X-ray structures, determined at ~2.0 Å resolution, reveal two quinonoid geometries: "relaxed" in the open and "tense" in the closed state of the active site. The "tense" state is characterized by changes in enzyme contacts made with the substrate's phenolic moiety, which result in significantly strained conformation at Cβ and Cγ positions. We also captured, at 2.25 Å resolution, the X-ray structure for the state just after the substrate's Cβ-Cγ bond cleavage by preparing the ternary complex between TPL, alanine quinonoid and pyridine N-oxide, which mimics the α-aminoacrylate intermediate with bound phenol. In this state, the enzyme-ligand contacts remain almost exactly the same as in the "tense" quinonoid, indicating that the strain induced by the closure of the active site facilitates elimination of phenol. Taken together, structural observations demonstrate that the enzyme serves not only to stabilize the transition state but also to destabilize the ground state.
Collapse
Affiliation(s)
- Dalibor Milić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Tatyana V. Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | - Nicolai G. Faleev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
| | - Robert S. Phillips
- Departments of Chemistry and of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Dubravka Matković-Čalogović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Alfred A. Antson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, United Kingdom
| |
Collapse
|
24
|
Stereospecificity of isotopic exchange of C-α-protons of glycine catalyzed by three PLP-dependent lyases: the unusual case of tyrosine phenol-lyase. Amino Acids 2010; 41:1247-56. [DOI: 10.1007/s00726-010-0802-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/28/2010] [Indexed: 11/29/2022]
|
25
|
Seisser B, Zinkl R, Gruber K, Kaufmann F, Hafner A, Kroutil W. Cutting Long Syntheses Short: Access to Non-Natural Tyrosine Derivatives Employing an Engineered Tyrosine Phenol Lyase. Adv Synth Catal 2010. [DOI: 10.1002/adsc.200900826] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Conformational changes and loose packing promote E. coli Tryptophanase cold lability. BMC STRUCTURAL BIOLOGY 2009; 9:65. [PMID: 19814824 PMCID: PMC2770544 DOI: 10.1186/1472-6807-9-65] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 10/08/2009] [Indexed: 11/25/2022]
Abstract
Background Oligomeric enzymes can undergo a reversible loss of activity at low temperatures. One such enzyme is tryptophanase (Trpase) from Escherichia coli. Trpase is a pyridoxal phosphate (PLP)-dependent tetrameric enzyme with a Mw of 210 kD. PLP is covalently bound through an enamine bond to Lys270 at the active site. The incubation of holo E. coli Trpases at 2°C for 20 h results in breaking this enamine bond and PLP release, as well as a reversible loss of activity and dissociation into dimers. This sequence of events is termed cold lability and its understanding bears relevance to protein stability and shelf life. Results We studied the reversible cold lability of E. coli Trpase and its Y74F, C298S and W330F mutants. In contrast to the holo E. coli Trpase all apo forms of Trpase dissociated into dimers already at 25°C and even further upon cooling to 2°C. The crystal structures of the two mutants, Y74F and C298S in their apo form were determined at 1.9Å resolution. These apo mutants were found in an open conformation compared to the closed conformation found for P. vulgaris in its holo form. This conformational change is further supported by a high pressure study. Conclusion We suggest that cold lability of E. coli Trpases is primarily affected by PLP release. The enhanced loss of activity of the three mutants is presumably due to the reduced size of the side chain of the amino acids. This prevents the tight assembly of the active tetramer, making it more susceptible to the cold driven changes in hydrophobic interactions which facilitate PLP release. The hydrophobic interactions along the non catalytic interface overshadow the effect of point mutations and may account for the differences in the dissociation of E. coli Trpase to dimers and P. vulgaris Trpase to monomers.
Collapse
|
27
|
Rha E, Kim S, Choi SL, Hong SP, Sung MH, Song JJ, Lee SG. Simultaneous improvement of catalytic activity and thermal stability of tyrosine phenol-lyase by directed evolution. FEBS J 2009; 276:6187-94. [DOI: 10.1111/j.1742-4658.2009.07322.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Demidkina TV, Antson AA, Faleev NG, Phillips RS, Zakomirdina LN. Spatial structure and the mechanism of tyrosine phenol-lyase and tryptophan indole-lyase. Mol Biol 2009. [DOI: 10.1134/s0026893309020101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Milić D, Demidkina TV, Faleev NG, Matković-Calogović D, Antson AA. Insights into the catalytic mechanism of tyrosine phenol-lyase from X-ray structures of quinonoid intermediates. J Biol Chem 2008; 283:29206-14. [PMID: 18715865 PMCID: PMC2662015 DOI: 10.1074/jbc.m802061200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 08/11/2008] [Indexed: 11/06/2022] Open
Abstract
Amino acid transformations catalyzed by a number of pyridoxal 5'-phosphate (PLP)-dependent enzymes involve abstraction of the Calpha proton from an external aldimine formed between a substrate and the cofactor leading to the formation of a quinonoid intermediate. Despite the key role played by the quinonoid intermediates in the catalysis by PLP-dependent enzymes, limited accurate information is available about their structures. We trapped the quinonoid intermediates of Citrobacter freundii tyrosine phenol-lyase with L-alanine and L-methionine in the crystalline state and determined their structures at 1.9- and 1.95-A resolution, respectively, by cryo-crystallography. The data reveal a network of protein-PLP-substrate interactions that stabilize the planar geometry of the quinonoid intermediate. In both structures the protein subunits are found in two conformations, open and closed, uncovering the mechanism by which binding of the substrate and restructuring of the active site during its closure protect the quinonoid intermediate from the solvent and bring catalytically important residues into positions suitable for the abstraction of phenol during the beta-elimination of L-tyrosine. In addition, the structural data indicate a mechanism for alanine racemization involving two bases, Lys-257 and a water molecule. These two bases are connected by a hydrogen bonding system allowing internal transfer of the Calpha proton.
Collapse
Affiliation(s)
- Dalibor Milić
- Laboratory of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
30
|
Almog O, Kogan A, Leeuw MD, Gdalevsky GY, Cohen-Luria R, Parola AH. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41. Biopolymers 2008; 89:354-9. [PMID: 17937401 DOI: 10.1002/bip.20866] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A wide variety of enzymes can undergo a reversible loss of activity at low temperature, a process that is termed cold inactivation. This phenomenon is found in oligomeric enzymes such as tryptophanase (Trpase) and other pyridoxal phosphate dependent enzymes. On the other hand, cold-adapted, or psychrophilic enzymes, isolated from organisms able to thrive in permanently cold environments, have optimal activity at low temperature, which is associated with low thermal stability. Since cold inactivation may be considered "contradictory" to cold adaptation, we have looked into the amino acid sequences and the crystal structures of two families of enzymes, subtilisin and tryptophanase. Two cold adapted subtilisins, S41 and subtilisin-like protease from Vibrio, were compared to a mesophilic and a thermophilic subtilisins, as well as to four PLP-dependent enzymes in order to understand the specific surface residues, specific interactions, or any other molecular features that may be responsible for the differences in their tolerance to cold temperatures. The comparison between the psychrophilic and the mesophilic subtilisins revealed that the cold adapted subtilisins have a high content of acidic residues mainly found on their surface, making it charged. The analysis of the Trpases showed that they have a high content of hydrophobic residues on their surface. Thus, we suggest that the negatively charged residues on the surface of the subtilisins may be responsible for their cold adaptation, whereas the hydrophobic residues on the surface of monomeric Trpase molecules are responsible for the tetrameric assembly, and may account for their cold inactivation and dissociation.
Collapse
Affiliation(s)
- Orna Almog
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.
| | | | | | | | | | | |
Collapse
|
31
|
Swiegers JH, Capone DL, Pardon KH, Elsey GM, Sefton MA, Francis IL, Pretorius IS. Engineering volatile thiol release inSaccharomyces cerevisiae for improved wine aroma. Yeast 2007; 24:561-74. [PMID: 17492802 DOI: 10.1002/yea.1493] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Volatile thiols, such as 4-mercapto-4-methylpentan-2-one (4MMP), 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), are among the most potent aroma compounds found in wine and can have a significant effect on wine quality and consumer preferences. At optimal concentrations in wine, these compounds impart flavours of passionfruit, grapefruit, gooseberry, blackcurrant, lychee, guava and box hedge. The enzymatic release of aromatic thiols from grape-derived, non-volatile cysteinylated precursors (Cys-4MMP and Cys-3MH) and the further modification thereof (conversion of 3MH into 3MHA) during fermentation, enhance the varietal characters of wines such as Sauvignon Blanc. Wine yeast strains have limited and varying capacities to produce aroma-enhancing thiols from their non-volatile counterparts in grape juice. Even under optimal fermentation conditions, the most efficient thiol-releasing Saccharomyces cerevisiae wine strain known realizes less than 5% of the thiol-related flavour potential of grape juice. The objective of this study was to develop a wine yeast able to unleash the untapped thiol aromas in grape juice during winemaking. To achieve this goal, the Escherichia coli tnaA gene, encoding a tryptophanase with strong cysteine-beta-lyase activity, was cloned and overexpressed in a commercial wine yeast strain under the control of the regulatory sequences of the yeast phosphoglycerate kinase I gene (PGK1). This modified strain expressing carbon-sulphur lyase activity released up to 25 times more 4MMP and 3MH in model ferments than the control host strain. Wines produced with the engineered strain displayed an intense passionfruit aroma. This yeast offers the potential to enhance the varietal aromas of wines to predetermined market specifications.
Collapse
Affiliation(s)
- Jan H Swiegers
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide SA 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Campanini B, Schiaretti F, Abbruzzetti S, Kessler D, Mozzarelli A. Sulfur Mobilization in Cyanobacteria. J Biol Chem 2006; 281:38769-80. [PMID: 17020883 DOI: 10.1074/jbc.m607098200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfur mobilization represents one of the key steps in ubiquitous Fe-S clusters assembly and is performed by a recently characterized set of proteins encompassing cysteine desulfurases, assembly factors, and shuttle proteins. Despite the evolutionary conservation of these proteins, some degree of variability among organisms was observed, which might reflect functional specialization. L-Cyst(e)ine lyase (C-DES), a pyridoxal 5'-phosphatedependent enzyme identified in the cyanobacterium Synechocystis, was reported to use preferentially cystine over cysteine with production of cysteine persulfide, pyruvate, and ammonia. In this study, we demonstrate that C-DES sequences are present in all cyanobacterial genomes and constitute a new family of sulfur-mobilizing enzymes, distinct from cysteine desulfurases. The functional properties of C-DES from Synechocystis sp. PCC 6714 were investigated under pre-steady-state and steady-state conditions. Single wavelength and rapid scanning stopped-flow kinetic data indicate that the internal aldimine reacts with cystine forming an external aldimine that rapidly decays to a transient quinonoid species and stable tautomers of the alpha-aminoacrylate Schiff base. In the presence of cysteine, the transient formation of a dipolar species precedes the selective and stable accumulation of the enolimine tautomer of the external aldimine, with no formation of the alpha-aminoacrylate Schiff base under reducing conditions. Effective sulfur mobilization from cystine might represent a mechanism that allows adaptation of cyanobacteria to different environmental conditions and to light-dark cycles.
Collapse
Affiliation(s)
- Barbara Campanini
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | | | | | | | | |
Collapse
|
33
|
Lee SG, Hong SP, Kim DY, Song JJ, Ro HS, Sung MH. Inactivation of tyrosine phenol-lyase by Pictet-Spengler reaction and alleviation by T15A mutation on intertwined N-terminal arm. FEBS J 2006; 273:5564-73. [PMID: 17094783 DOI: 10.1111/j.1742-4658.2006.05546.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Citrobacter freundiil-tyrosine phenol-lyase (TPL) was inactivated by a Pictet-Spengler reaction between the cofactor and a substrate, 3,4-dihydroxyphenyl-L-alanine (L-dopa), in proportion to an increase in the reaction temperature. Random mutagenesis of the tpl gene resulted in the generation of a Thr15 to Ala mutant (T15A), which exhibited a two-fold improved activity towards L-DOPA as the substrate. The Thr15 residue was located on the intertwined N-terminal arm of the TPL structure, and comprised an H-bond network in proximity to the hydrophobic core between the catalytic dimers. The maximum activity of the mutant and native enzymes with L-DOPA was detected at 45 and 40 degrees C, respectively, which was 15 degrees C lower than when using L-tyrosine as the substrate. The half-lives at 45 degrees C were about 16.8 and 6.4 min for the mutant and native enzymes, respectively, in 10 mM L-DOPA. On treatment with excess pyridoxal-5'-phosphate (PLP), the L-DOPA-inactivated enzymes recovered over 80% of their original activities, thereby attributing the inactivation to a loss of the cofactor through Pictet-Spengler condensation with L-DOPA. Consistent with the extended half-life, the apparent Michaelis constant of the T15A enzyme for PLP (K(m,PLP)) increased slowly when increasing the temperature, while that of the native enzyme showed a sharp increase at temperatures higher than 50 degrees C, implying that the loss of the cofactor with the Pictet-Spengler reaction was prevented by the tighter binding and smaller release of the cofactor in the mutant enzyme.
Collapse
Affiliation(s)
- Seung-Goo Lee
- Systems Microbiology Research Center, KRIBB, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
34
|
Milić D, Matković-Calogović D, Demidkina TV, Kulikova VV, Sinitzina NI, Antson AA. Structures of apo- and holo-tyrosine phenol-lyase reveal a catalytically critical closed conformation and suggest a mechanism for activation by K+ ions. Biochemistry 2006; 45:7544-52. [PMID: 16768450 PMCID: PMC2691550 DOI: 10.1021/bi0601858] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tyrosine phenol-lyase, a tetrameric pyridoxal 5'-phosphate dependent enzyme, catalyzes the reversible hydrolytic cleavage of L-tyrosine to phenol and ammonium pyruvate. Here we describe the crystal structure of the Citrobacter freundii holoenzyme at 1.9 A resolution. The structure reveals a network of protein interactions with the cofactor, pyridoxal 5'-phosphate, and details of coordination of the catalytically important K+ ion. We also present the structure of the apoenzyme at 1.85 A resolution. Both structures were determined using crystals grown at pH 8.0, which is close to the pH of the maximal enzymatic activity (8.2). Comparison of the apoenzyme structure with the one previously determined at pH 6.0 reveals significant differences. The data suggest that the decrease of the enzymatic activity at pH 6.0 may be caused by conformational changes in the active site residues Tyr71, Tyr291, and Arg381 and in the monovalent cation binding residue Glu69. Moreover, at pH 8.0 we observe two different active site conformations: open, which was characterized before, and closed, which is observed for the first time in beta-eliminating lyases. In the closed conformation a significant part of the small domain undergoes an extraordinary motion of up to 12 A toward the large domain, closing the active site cleft and bringing the catalytically important Arg381 and Phe448 into the active site. The closed conformation allows rationalization of the results of previous mutational studies and suggests that the observed active site closure is critical for the course of the enzymatic reaction and for the enzyme's specificity toward its physiological substrate. Finally, the closed conformation allows us to model keto(imino)quinonoid, the key transition intermediate.
Collapse
Affiliation(s)
- Dalibor Milić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
35
|
Pioselli B, Bettati S, Demidkina TV, Zakomirdina LN, Phillips RS, Mozzarelli A. Tyrosine phenol-lyase and tryptophan indole-lyase encapsulated in wet nanoporous silica gels: Selective stabilization of tertiary conformations. Protein Sci 2004; 13:913-24. [PMID: 15044726 PMCID: PMC2280055 DOI: 10.1110/ps.03492904] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The pyridoxal 5'-phosphate-dependent enzymes tyrosine phenol-lyase and tryptophan indole-lyase were encapsulated in wet nanoporous silica gels, a powerful method to selectively stabilize tertiary and quaternary protein conformations and to develop bioreactors and biosensors. A comparison of the enzyme reactivity in silica gels and in solution was carried out by determining equilibrium and kinetic parameters, exploiting the distinct spectral properties of catalytic intermediates and reaction products. The encapsulated enzymes exhibit altered distributions of ketoenamine and enolimine tautomers, increased values of inhibitors dissociation constants, slow attaining of steady-state in the presence of substrate and substrate analogs, modified steady-state distribution of catalytic intermediates, and a sixfold-eightfold decrease of specific activities. This behavior can be rationalized by a reduced conformational flexibility for the encapsulated enzymes and a selective stabilization of either the open (inactive) or the closed (active) form of the enzymes. Despite very similar structures and catalytic mechanisms, the influence of encapsulation is more pronounced for tyrosine phenol-lyase than tryptophan indole-lyase. This finding indicates that subtle structural and dynamic differences can lead to distinct interactions of the protein with the gel matrix.
Collapse
Affiliation(s)
- Barbara Pioselli
- Department of Biochemistry and Molecular Biology, University of Parma, Via Parco delle Scienze 23/A, 43100 Parma, Italy
| | | | | | | | | | | |
Collapse
|