1
|
Wang Y, Liu X, Zheng Y, Yang Y, Chen M. Endocrine regulation of reproductive biology in echinoderms: An evolutionary perspective from closest marine invertebrate relatives to chordates. Mol Cell Endocrinol 2024; 580:112105. [PMID: 37952726 DOI: 10.1016/j.mce.2023.112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Echinoderms are a phylum of invertebrate deuterostomes, which contain echinoids, asteroids, holothuroids, crinoids, and ophiuroids. Echinoderms have special evolutionary position and unique characteristics, including pentamerous radial body structure, elaborate calcareous endoskeletons, and versatile water vascular system. Echinoderms exhibit extraordinarily diverse reproductive modes: asexual reproduction, sexual reproduction, sexual reversal, etc. Endocrine regulation plays important well-known roles in sex differentiation, gonadal development and maturation, gametogenesis, and reproductive behavior in vertebrates. However, the entire picture of reproductive endocrinology in echinoderms as an evolutionary model of the closest marine invertebrate relatives to chordates has not been revealed. Here, we reviewed previous and recent research progress on reproductive endocrinology in echinoderms, mainly including two sections: Sex steroids in echinoderms and neuropeptide regulation in echinoderm reproduction. This review introduces a variety of endocrine regulatory mechanisms in reproductive biology of echinoderms. It discusses the vertebrate-like sex steroids, putative steroidogenic pathway and metabolism, and reproduction-related neuropeptides. The review will provide a deeper understanding about endocrine regulatory mechanisms of gonadal development in lower deuterostomes and the application of endocrine control in economic echinoderm species in aquaculture.
Collapse
Affiliation(s)
- Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xinghai Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
2
|
Menchinskaya ES, Dyshlovoy SA, Venz S, Jacobsen C, Hauschild J, Rohlfing T, Silchenko AS, Avilov SA, Balabanov S, Bokemeyer C, Aminin DL, von Amsberg G, Honecker F. Anticancer Activity of the Marine Triterpene Glycoside Cucumarioside A 2-2 in Human Prostate Cancer Cells. Mar Drugs 2023; 22:20. [PMID: 38248645 PMCID: PMC10817243 DOI: 10.3390/md22010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Despite recent advances in the treatment of metastatic castration-resistant prostate cancer (CRPC), treatment is inevitably hampered by the development of drug resistance. Thus, new drugs are urgently needed. We investigated the efficacy, toxicity, and mechanism of action of the marine triterpene glycoside cucumarioside A2-2 (CA2-2) using an in vitro CRPC model. CA2-2 induced a G2/M-phase cell cycle arrest in human prostate cancer PC-3 cells and caspase-dependent apoptosis executed via an intrinsic pathway. Additionally, the drug inhibited the formation and growth of CRPC cell colonies at low micromolar concentrations. A global proteome analysis performed using the 2D-PAGE technique, followed by MALDI-MS and bioinformatical evaluation, revealed alterations in the proteins involved in cellular processes such as metastatic potential, invasion, and apoptosis. Among others, the regulation of keratin 81, CrkII, IL-1β, and cathepsin B could be identified by our proteomics approach. The effects were validated on the protein level by a 2D Western blotting analysis. Our results demonstrate the promising anticancer activity of CA2-2 in a prostate cancer model and provide insights on the underlying mode of action.
Collapse
Affiliation(s)
- Ekaterina S. Menchinskaya
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.S.S.); (S.A.A.); (D.L.A.)
| | - Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, 17475 Greifswald, Germany;
| | - Christine Jacobsen
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
| | - Jessica Hauschild
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
| | - Tina Rohlfing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
| | - Aleksandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.S.S.); (S.A.A.); (D.L.A.)
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.S.S.); (S.A.A.); (D.L.A.)
| | - Stefan Balabanov
- Division of Hematology, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
| | - Dmitry L. Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia; (A.S.S.); (S.A.A.); (D.L.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Sanmin District, Kaohsiung City 80708, Taiwan
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Friedemann Honecker
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum—University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.J.); (J.H.); (T.R.); (C.B.); (G.v.A.); (F.H.)
- Tumor and Breast Center Eastern Switzerland, 9016 St. Gallen, Switzerland
| |
Collapse
|
3
|
Popov RS, Ivanchina NV, Silchenko AS, Avilov SA, Kalinin VI, Malyarenko TV, Stonik VA, Dmitrenok PS. A Mass Spectrometry Database for Sea Cucumber Triterpene Glycosides. Metabolites 2023; 13:783. [PMID: 37512490 PMCID: PMC10384350 DOI: 10.3390/metabo13070783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Sea cucumber triterpene glycosides are a class of secondary metabolites that possess distinctive chemical structures and exhibit a variety of biological and pharmacological activities. The application of MS-based approaches for the study of triterpene glycosides allows rapid evaluation of the structural diversity of metabolites in complex mixtures. However, the identification of the detected triterpene glycosides can be challenging. The objective of this study is to establish the first spectral library containing the mass spectra of sea cucumber triterpene glycosides using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry. The library contains the electrospray ionization tandem mass spectra and retention times of 191 triterpene glycosides previously isolated from 15 sea cucumber species and one starfish at the Laboratory of the Chemistry of Marine Natural Products of the G.B. Elyakov Pacific Institute of Bioorganic Chemistry. In addition, the chromatographic behavior and some structure-related neutral losses in tandem MS are discussed. The obtained data will accelerate the accurate dereplication of known triterpene glycosides and the annotation of novel compounds, as we demonstrated by the processing of LC-MS/MS data of Eupentacta fraudatrix extract.
Collapse
Affiliation(s)
- Roman S Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia
| | - Natalia V Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia
| | - Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia
| | - Sergey A Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia
| | - Vladimir I Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia
| | - Timofey V Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia
| |
Collapse
|
4
|
Silchenko AS, Avilov SA, Popov RS, Dmitrenok PS, Chingizova EA, Grebnev BB, Rasin AB, Kalinin VI. Chilensosides E, F, and G-New Tetrasulfated Triterpene Glycosides from the Sea Cucumber Paracaudina chilensis (Caudinidae, Molpadida): Structures, Activity, and Biogenesis. Mar Drugs 2023; 21:md21020114. [PMID: 36827155 PMCID: PMC9964569 DOI: 10.3390/md21020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Three new tetrasulfated triterpene glycosides, chilensosides E (1), F (2), and G (3), have been isolated from the Far-Eastern sea cucumber Paracaudina chilensis (Caudinidae, Molpadida). The structures were established based on extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The compounds differ in their carbohydrate chains, namely in the number of monosaccharide residues (five or six) and in the positions of sulfate groups. Chilensosides E (1) and F (2) are tetrasulfated pentaosides with the position of one of the sulfate groups at C-3 Glc3, and chilensoside G (3) is a tetrasulfated hexaoside. The biogenetic analysis of the glycosides of P. chilensis has revealed that the structures form a network due to the attachment of sulfate groups to almost all possible positions. The upper semi-chain is sulfated earlier in the biosynthetic process than the lower one. Noticeably, the presence of a sulfate group at C-3 Glc3-a terminal monosaccharide residue in the bottom semi-chain of compounds 1 and 2-excludes the possibility of this sugar chain's further elongation. Presumably, the processes of glycosylation and sulfation are concurrent biosynthetic stages. They can be shifted in time in relation to each other, which is a characteristic feature of the mosaic type of biosynthesis. The hemolytic action of compounds 1-3 against human erythrocytes and cytotoxic activities against five human cancer cell lines were tested. The compounds showed moderate hemolytic activity but were inactive against cancer cells, probably because of their structural peculiarities, such as the combination of positions of four sulfate groups.
Collapse
|
5
|
Silchenko AS, Avilov SA, Andrijaschenko PV, Popov RS, Chingizova EA, Dmitrenok PS, Kalinovsky AI, Rasin AB, Kalinin VI. Structures and Biologic Activity of Chitonoidosides I, J, K, K1 and L-Triterpene Di-, Tri- and Tetrasulfated Hexaosides from the Sea Cucumber Psolus chitonoides. Mar Drugs 2022; 20:md20060369. [PMID: 35736172 PMCID: PMC9228963 DOI: 10.3390/md20060369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Five new triterpene di-, tri- and tetrasulfated hexaosides (chitonoidosides I (1), J (2), K (3), K1 (4) and L (5)) were isolated from the Far-Eastern sea cucumber Psolus chitonoides, collected near Bering Island (Commander Islands) from a depth of 100–150 m. The structural variability of the glycosides concerned both the aglycones (with 7(8)- or 9(11)-double bonds) and carbohydrate chains differing from each other by the third sugar residue (Xyl or sulfated by C-6 Glc) and/or by the fourth—terminal in the bottom semi-chain—residue (Glc or sulfated by C-6 MeGlc) as well as by the positions of a sulfate group at C-4 or C-6 in the sixth—terminal in the upper semi-chain—residue (MeGlc). Hemolytic activities of these compounds 1–5 against human erythrocytes as well as cytotoxicity against human cancer cell lines, HeLa, DLD-1 and HL-60, were studied. The hexaosides, chitonoidosides K (3) and L (5) with four sulfate groups, were the most active against tumor cells in all the tests. Noticeably, the sulfate group at C-4 of MeGlc6 did not decrease the membranolytic effect of 5 as compared with 3, having the sulfate group at C-6 of MeGlc6. Erythrocytes were, as usual, more sensitive to the action of the studied glycosides than cancer cells, although the sensitivity of leukemia promyeloblast HL-60 cells was higher than that of other tumor cells. The glycosides 1 and 2 demonstrated some weaker action in relation to DLD-1 cells than against other tumor cell lines. Chitonoidoside K1 (4) with a hydroxyl at C 25 of the aglycone was not active in all the tests. The metabolic network formed by the carbohydrate chains of all the glycosides isolated from P. chitonoides as well as the aglycones biosynthetic transformations during their biosynthesis are discussed and illustrated with schemes.
Collapse
|
6
|
Popov RS, Ivanchina NV, Dmitrenok PS. Application of MS-Based Metabolomic Approaches in Analysis of Starfish and Sea Cucumber Bioactive Compounds. Mar Drugs 2022; 20:320. [PMID: 35621972 PMCID: PMC9147407 DOI: 10.3390/md20050320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Today, marine natural products are considered one of the main sources of compounds for drug development. Starfish and sea cucumbers are potential sources of natural products of pharmaceutical interest. Among their metabolites, polar steroids, triterpene glycosides, and polar lipids have attracted a great deal of attention; however, studying these compounds by conventional methods is challenging. The application of modern MS-based approaches can help to obtain valuable information about such compounds. This review provides an up-to-date overview of MS-based applications for starfish and sea cucumber bioactive compounds analysis. While describing most characteristic features of MS-based approaches in the context of starfish and sea cucumber metabolites, including sample preparation and MS analysis steps, the present paper mainly focuses on the application of MS-based metabolic profiling of polar steroid compounds, triterpene glycosides, and lipids. The application of MS in metabolomics studies is also outlined.
Collapse
Affiliation(s)
- Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| | | | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| |
Collapse
|
7
|
Malyarenko TV, Malyarenko OS, Kicha AA, Kalinovsky AI, Dmitrenok PS, Ivanchina NV. In Vitro Anticancer and Cancer-Preventive Activity of New Triterpene Glycosides from the Far Eastern Starfish Solaster pacificus. Mar Drugs 2022; 20:216. [PMID: 35323516 PMCID: PMC8951750 DOI: 10.3390/md20030216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Sea stars or starfish (class Asteroidea) and holothurians or sea cucumbers (class Holothuroidea), belonging to the phylum Echinodermata (echinoderms), are characterized by different sets of glycosidic metabolites: the steroid type in starfish and the triterpene type in holothurians. However, herein we report the isolation of eight new triterpene glycosides, pacificusosides D−K (1−3, 5−9) along with the known cucumarioside D (4), from the alcoholic extract of the Far Eastern starfish Solaster pacificus. The isolated new compounds are closely related to the metabolites of sea cucumbers, and their structures of 1−3 and 5−9 were determined by extensive NMR and ESIMS techniques. Compounds 2, 5, and 8 have a new type of tetrasaccharide chain with a terminal non-methylated monosaccharide unit. Compounds 3, 6, and 9 contain another new type of tetrasaccharide chain, having 6-O-SO3-Glc as one of the sugar units. The cytotoxic activity of 1−9 against non-cancerous mouse epidermal cells JB6 Cl41 and human melanoma cell lines SK-MEL-2, SK-MEL-28, and RPMI-7951 was determined by MTS assay. Compounds 1, 3, 4, 6, and 9 showed potent cytotoxicity against these cell lines, but the cancer selectivity (SI > 9) was observed only against the SK-MEL-2 cell line. Compounds 1, 3, 4, 6, and 9 at the non-toxic concentration of 0.1 μM significantly inhibited neoplastic cell transformation of JB6 Cl41 cells induced by chemical carcinogens (EGF, TPA) or ionizing radiation (X-rays and UVB). Moreover, compounds 1 and 4 at the non-toxic concentration of 0.1 µM possessed the highest inhibiting activity on colony formation among the investigated compounds and decreased the colonies number of SK-MEL-2 cells by 64% and 70%, respectively. Thus, triterpene glycosides 1 and 4 can be considered as prospective cancer-preventive and anticancer-compound leaders.
Collapse
Affiliation(s)
- Timofey V. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
- Department of Bioorganic Chemistry and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Russky Island, Ajax Bay, 10, 690922 Vladivostok, Russia
| | - Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| | - Alla A. Kicha
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| |
Collapse
|
8
|
Non-holostane and Holostane Triterpene Glycosides from Spawn of Sea Cucumber Apostichopus japonicus Selenka. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Zelepuga EA, Silchenko AS, Avilov SA, Kalinin VI. Structure-Activity Relationships of Holothuroid's Triterpene Glycosides and Some In Silico Insights Obtained by Molecular Dynamics Study on the Mechanisms of Their Membranolytic Action. Mar Drugs 2021; 19:md19110604. [PMID: 34822475 PMCID: PMC8625879 DOI: 10.3390/md19110604] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
The article describes the structure-activity relationships (SAR) for a broad series of sea cucumber glycosides on different tumor cell lines and erythrocytes, and an in silico modulation of the interaction of selected glycosides from the sea cucumber Eupentacta fraudatrix with model erythrocyte membranes using full-atom molecular dynamics (MD) simulations. The in silico approach revealed that the glycosides bound to the membrane surface mainly through hydrophobic interactions and hydrogen bonds. The mode of such interactions depends on the aglycone structure, including the side chain structural peculiarities, and varies to a great extent. Two different mechanisms of glycoside/membrane interactions were discovered. The first one was realized through the pore formation (by cucumariosides A1 (40) and A8 (44)), preceded by bonding of the glycosides with membrane sphingomyelin, phospholipids, and cholesterol. Noncovalent intermolecular interactions inside multimolecular membrane complexes and their stoichiometry differed for 40 and 44. The second mechanism was realized by cucumarioside A2 (59) through the formation of phospholipid and cholesterol clusters in the outer and inner membrane leaflets, correspondingly. Noticeably, the glycoside/phospholipid interactions were more favorable compared to the glycoside/cholesterol interactions, but the glycoside possessed an agglomerating action towards the cholesterol molecules from the inner membrane leaflet. In silicosimulations of the interactions of cucumarioside A7 (45) with model membrane demonstrated only slight interactions with phospholipid polar heads and the absence of glycoside/cholesterol interactions. This fact correlated well with very low experimental hemolytic activity of this substance. The observed peculiarities of membranotropic action are in good agreement with the corresponding experimental data on hemolytic activity of the investigated compounds in vitro.
Collapse
|
10
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
11
|
Mert-Ozupek N, Basbinar Y, Uysal-Kilic T, Koz O, Ellidokuz H, Cavas L. Semi-Purified Saponins of Holothuria poli Associated Antiproliferation in Tumor Cell Lines. Nutr Cancer 2021; 74:1511-1518. [PMID: 34459328 DOI: 10.1080/01635581.2021.1952630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of cancer has exhibited an increasing trend in recent years because of many reasons such as environmental and nutritional factors. There is a great need for the development of new and natural molecules with lower side effects in the therapy of cancer. It was aimed to evaluate the antiproliferative effect of semi-purified triterpene glycosides of Holothuria poli on different human cancer cell lines. The body walls of H. poli as the main sources of saponins were used and the saponin content of the extract was characterized by MALDI-TOF/MS. The antiproliferation activity of the characterized extract was tested on cancer cell lines. The extract showed antiproliferative effect on the studied cancer cell lines. The mass analysis results reveal that Holothurin A is one of the saponins within the extract. The measured IC50 values were found as 31.41 ± 2.20, 77.45 ± 0.23, and 34.79 ± 0.90 µg mL-1 for HT-29, UPCI-SCC-131, and T84 cell lines, respectively. H. poli secretes not only specific saponins but also a cocktail of them. Specific versus. cocktails of the saponins and by also applying organic modification must be studied in further research to understand their mechanisms in the antiproliferation studies since this paper reveals promising results.
Collapse
Affiliation(s)
- Nazli Mert-Ozupek
- Institute of Health Sciences, Department of Basic Oncology, Dokuz Eylül University, İzmir, Turkey
| | - Yasemin Basbinar
- Institute of Oncology, Department of Translational Oncology, Dokuz Eylül University, İzmir, Turkey
| | - Tugba Uysal-Kilic
- Department of Molecular Biology and Genetics, Hitit University, Corum, Turkey
| | - Omer Koz
- Department of Chemistry, Bursa Technical University, Bursa, Turkey
| | - Hulya Ellidokuz
- Institute of Oncology, Department of Preventive Oncology, Dokuz Eylül University, İzmir, Turkey
| | - Levent Cavas
- Department of Chemistry, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
12
|
A new sulfated triterpene glycoside from the sea cucumber Colochirus quadrangularis, and evaluation of its antifungal, antitumor and immunomodulatory activities. Bioorg Med Chem 2021; 41:116188. [PMID: 34000508 DOI: 10.1016/j.bmc.2021.116188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Our continuing search for marine bioactive secondary metabolites led to the screening of crude extracts of sea cucumbers by the model of Pyricularia oryzae. A new sulfated triterpene glycoside, coloquadranoside A (1), together with four known triterpene glycosides, philinopside A, B, E and pentactaside B (2-5) were isolated from the sea cucumber Colochirus quadrangularis, and their structures were elucidated using extensive spectroscope analysis (ESI-MS, 1D and 2D NMR) and chemical methods. Coloquadranoside A possesses a 16-acetyloxy group in the holostane-type triterpene aglycone with a 7(8)-double bond, a double bond (25,26) at its side chain, and two β-d-xylose in the carbohydrate chain. Coloquadranoside A exhibits in vitro some antifungus, considerable cytotoxicity (IC50 of 0.46-2.03 μM) against eight human tumor cell lines, in vivo antitumor, and immunomodulatory activity.
Collapse
|
13
|
New Triterpene Glycosides from the Far Eastern Starfish Solaster pacificus and Their Biological Activity. Biomolecules 2021; 11:biom11030427. [PMID: 33799442 PMCID: PMC8001898 DOI: 10.3390/biom11030427] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Three new triterpene glycosides, pacificusosides A–C (1–3), and three previously known triterpene glycosides, cucumariosides C1 (4), C2 (5), and A10 (6), were isolated from the alcoholic extract of the Far Eastern starfish Solaster pacificus. The structures of 1–3 were elucidated by extensive NMR and ESIMS techniques and chemical transformations. Compound 1 has a novel, unique structure, containing an aldehyde group of side chains in its triterpene aglycon. This structural fragment has not previously been found in the sea cucumber triterpene glycosides or starfish steroidal glycosides. Probably, pacificusoside A (1) is a product of the metabolism of the glycoside obtained through dietary means from a sea cucumber in the starfish. Another two new triterpene glycosides (2, 3) have closely related characteristics to sea cucumber glycosides. The cytotoxicity of compounds 1–6 was tested against human embryonic kidney HEK 293 cells, colorectal carcinoma HT-29 cells, melanoma RPMI-7951 cells, and breast cancer MDA-MB-231 cells using MTS assay. Compounds 4–6 revealed the highest cytotoxic activity against the tested cell lines, while the other investigated compounds had moderate or slight cytotoxicity. The cytotoxic effects of 2–6 were reduced by cholesterol like the similar effects of the previously investigated individual triterpene glycosides. Compounds 3, 4, and 5 almost completely suppressed the colony formation of the HT-29, RPMI-7951, and MDA-MB-231 cells at a nontoxic concentration of 0.5 µM.
Collapse
|
14
|
Nursid M, Patantis G, Dewi AS, Achmad MJ, Sembodo PM, Estuningsih S. Immunnostimulatory activity of Holothuria atra sea cucumber. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e58820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immunostimulant is a substance that can stimulate the immune system against pathogenic microbes. Natural products produced by sea cucumbers have the potential to be developed as immunostimulants. This study was aimed to evaluate the imunostimulatory activity of Holothuria atra extract using the phagocytocyte assay of macrophage cells and the differentiation of leukocyte in rats. The samples of H. atra were taken from Halmahera waters, North Maluku, Indonesia. Extraction was carried out with 96% ethanol. Phagocytocyte activity assay was carried out using macrophage cells isolated from Balb/c mice (Mus musculus) using a series of doses 0.5; 1.0; 2.0; 4.0; 8.0; 16.0 and 32.0 mg/kg body weight. Leukocyte differentiation test in vivo was conducted using Rattus norvegicus rat treated with H. atra extract for 90 days with the following series of doses: 0, 25, 50, 100, and 200 mg/kg body weight. The results showed that the highest phagocytosis activity was reached at a concentration of 4.0 µg/ml, but it was insignificantly different from the negative control group (p < 0.05). Leukocyte differentiation assay showed that the administration of H. atra extract increased the immune system response in the animals which was characterized by the increasing number of lymphocyte cells. H. atra extract also decreased the number of monocytes and neutrophils, suggesting the suppression of inflammation in the tested rats. Extract administration for 90 days did not cause a hypersensitivity reaction as indicated by the unchanged number of eosinophil and basophil cells. Based on the results of this study, it is concluded that H. atra had a potency to develop as an immunostimulant.
Collapse
|
15
|
Kamyab E, Rohde S, Kellermann MY, Schupp PJ. Chemical Defense Mechanisms and Ecological Implications of Indo-Pacific Holothurians. Molecules 2020; 25:E4808. [PMID: 33086732 PMCID: PMC7587958 DOI: 10.3390/molecules25204808] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
Sea cucumbers are slow-moving organisms that use morphological, but also a diverse combination of chemical defenses to improve their overall fitness and chances of survival. Since chemical defense compounds are also of great pharmaceutical interest, we pinpoint the importance of biological screenings that are a relatively fast, informative and inexpensive way to identify the most bioactive organisms prior to further costly and elaborate pharmacological screenings. In this study, we investigated the presence and absence of chemical defenses of 14 different sea cucumber species from three families (Holothuriidae, Stichopodidae and Synaptidae) against ecological factors such as predation and pathogenic attacks. We used the different sea cucumber crude extracts as well as purified fractions and pure saponin compounds in a portfolio of ecological activity tests including fish feeding assays, cytotoxicity tests and antimicrobial assays against environmental pathogenic and non-pathogenic bacteria. Furthermore, we quantified and correlated the concentrations of sea cucumber characteristic saponin compounds as effective chemical defensive compounds in all 14 crude extracts by using the vanillin-sulfuric acid test. The initial results revealed that among all tested sea cucumber species that were defended against at least one ecological threat (predation and/or bacterial attack), Bohadschiaargus, Stichopuscholoronotus and Holothuria fuscopunctata were the three most promising bioactive sea cucumber species. Therefore, following further fractionation and purification attempts, we also tested saponin-containing butanol fractions of the latter, as well as two purified saponin species from B. argus. We could demonstrate that both, the amount of saponin compounds and their structure likely play a significant role in the chemical defense strategy of the sea cucumbers. Our study concludes that the chemical and morphological defense mechanisms (and combinations thereof) differ among the ecological strategies of the investigated holothurian species in order to increase their general fitness and level of survival. Finally, our observations and experiments on the chemical ecology of marine organisms can not only lead to a better understanding of their ecology and environmental roles but also can help in the better selection of bioactive organisms/compounds for the discovery of novel, pharmacologically active secondary metabolites in the near future.
Collapse
Affiliation(s)
- Elham Kamyab
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (S.R.); (M.Y.K.)
| | - Sven Rohde
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (S.R.); (M.Y.K.)
| | - Matthias Y. Kellermann
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (S.R.); (M.Y.K.)
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany; (S.R.); (M.Y.K.)
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstrasse 231, D-26129 Oldenburg, Germany
| |
Collapse
|
16
|
Shao X, Wang X, Zhu K, Dang Y, Yu B. Synthesis of Sea Cucumber Saponins with Antitumor Activities. J Org Chem 2020; 85:12080-12096. [PMID: 32924489 DOI: 10.1021/acs.joc.0c01191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Holostane glycosides are characteristic metabolites of sea cucumbers, which possess various biological activities. Here, we report the synthesis of two representative congeners, namely, pervicoside B and C, starting from lanosterol with the longest linear sequence of both 34 steps and in 0.3% overall yields. The flexible synthetic approach has enabled us to expeditiously prepare 16 analogues for preliminary studies on the key structural features influencing their antiproliferative activities against tumor cells. A simplified disaccharide is found to be as potent as natural tetrasaccharides, which can be used as a lead for future studies.
Collapse
Affiliation(s)
- Xiaofei Shao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaobo Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Kaidi Zhu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
17
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andrijaschenko PV, Popov RS, Dmitrenok PS, Chingizova EA, Ermakova SP, Malyarenko OS, Dautov SS, Kalinin VI. Structures and Bioactivities of Quadrangularisosides A, A 1, B, B 1, B 2, C, C 1, D, D 1-D 4, and E from the Sea Cucumber Colochirus quadrangularis: The First Discovery of the Glycosides, Sulfated by C-4 of the Terminal 3- O-Methylglucose Residue. Synergetic Effect on Colony Formation of Tumor HT-29 Cells of these Glycosides with Radioactive Irradiation. Mar Drugs 2020; 18:md18080394. [PMID: 32731458 PMCID: PMC7460491 DOI: 10.3390/md18080394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/23/2023] Open
Abstract
Thirteen new mono-, di-, and trisulfated triterpene glycosides, quadrangularisosides A-D4 (1-13) have been isolated from the sea cucumber Colochirus quadrangularis, which was collected in Vietnamese waters. The structures of these glycosides were established by 2D NMR spectroscopy and HR-ESI (High Resolution Electrospray Ionization) mass spectrometry. The novel carbohydrate moieties of quadrangularisosides D-D4 (8-12), belonging to the group D, and quadrangularisoside E (13) contain three sulfate groups, with one of them occupying an unusual position-at C(4) of terminal 3-O-methylglucose residue. Quadrangularisosides A (1) and D3 (11) as well as quadrangularisosides A1 (2) and D4 (12) are characterized by the new aglycones having 25-hydroperoxyl or 24-hydroperoxyl groups in their side chains, respectively. The cytotoxic activities of compounds 1-13 against mouse neuroblastoma Neuro 2a, normal epithelial JB-6 cells, erythrocytes, and human colorectal adenocarcinoma HT-29 cells were studied. All the compounds were rather strong hemolytics. The structural features that most affect the bioactivity of the glycosides are the presence of hydroperoxy groups in the side chains and the quantity of sulfate groups. The membranolytic activity of monosulfated quadrangularisosides of group A (1, 2) against Neuro 2a, JB-6 cells, and erythrocytes was relatively weak due to the availability of the hydroperoxyl group, whereas trisulfated quadrangularisosides D3 (11) and D4 (12) with the same aglycones as 1, 2 were the least active compounds in the series due to the combination of these two structural peculiarities. The erythrocytes were more sensitive to the action of the glycosides than Neuro 2a or JB-6 cells, but the structure-activity relationships observed for glycosides 1-13 were similar in the three cell lines investigated. The compounds 3-5, 8, and 9 effectively suppressed the cell viability of HT-29 cells. Quadrangularisosides A1 (2), C (6), C1 (7), and E (13) possessed strong inhibitory activity on colony formation in HT-29 cells. Due to the synergic effects of these glycosides (0.02 μM) and radioactive irradiation (1 Gy), a decreasing of number of colonies was detected. Glycosides 1, 3, and 9 enhanced the effect of radiation by about 30%.
Collapse
Affiliation(s)
- Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
- Correspondence: ; Tel.: +7(423)2-31-40-50
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Pelageya V. Andrijaschenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| | - Salim Sh. Dautov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 17 Palchevskogo Street, Vladivostok 690041, Russia;
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia; (A.I.K.); (S.A.A.); (P.V.A.); (R.S.P.); (P.S.D.); (E.A.C.); (S.P.E.); (O.S.M.); (V.I.K.)
| |
Collapse
|
18
|
Hossain A, Dave D, Shahidi F. Northern Sea Cucumber ( Cucumaria frondosa): A Potential Candidate for Functional Food, Nutraceutical, and Pharmaceutical Sector. Mar Drugs 2020; 18:md18050274. [PMID: 32455954 PMCID: PMC7281287 DOI: 10.3390/md18050274] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Sea cucumber (Cucumaria frondosa) is the most abundant and widely distributed species in the cold waters of North Atlantic Ocean. C. frondosa contains a wide range of bioactive compounds, mainly collagen, cerebrosides, glycosaminoglycan, chondroitin sulfate, saponins, phenols, and mucopolysaccharides, which demonstrate unique biological and pharmacological properties. In particular, the body wall of this marine invertebrate is the major edible part and contains most of the active constituents, mainly polysaccharides and collagen, which exhibit numerous biological activities, including anticancer, anti-hypertensive, anti-angiogenic, anti-inflammatory, antidiabetic, anti-coagulation, antimicrobial, antioxidation, and anti- osteoclastogenic properties. In particular, triterpene glycosides (frondoside A and other) are the most researched group of compounds due to their potential anticancer activity. This review summarizes the latest information on C. frondosa, mainly geographical distribution, landings specific to Canadian coastlines, processing, commercial products, trade market, bioactive compounds, and potential health benefits in the context of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John’s, NL A1C 5R3, Canada
- Correspondence: (D.D.); (F.S.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Correspondence: (D.D.); (F.S.)
| |
Collapse
|
19
|
Omran NE, Salem HK, Eissa SH, Kabbash AM, Kandeil MA, Salem MA. Chemotaxonomic study of the most abundant Egyptian sea-cucumbers using ultra-performance liquid chromatography (UPLC) coupled to high-resolution mass spectrometry (HRMS). CHEMOECOLOGY 2019. [DOI: 10.1007/s00049-019-00296-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Structures and Bioactivities of Psolusosides B 1, B 2, J, K, L, M, N, O, P, and Q from the Sea Cucumber Psolus fabricii. The First Finding of Tetrasulfated Marine Low Molecular Weight Metabolites. Mar Drugs 2019; 17:md17110631. [PMID: 31698820 PMCID: PMC6891663 DOI: 10.3390/md17110631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022] Open
Abstract
Ten new di-, tri- and tetrasulfated triterpene glycosides, psolusosides B1 (1), B2 (2), J (3), K (4), L (5), M (6), N (7), O (8), P (9), and Q (10), were isolated from the sea cucumber Psolus fabricii collected in the Sea of Okhotsk near the Kurile Islands. Structures of these glycosides were established by two-dimensional (2D) NMR spectroscopy and HR-ESI mass-spectrometry. It is particularly interesting that highly polar compounds 9 and 10 contain four sulfate groups in their carbohydrate moieties, including two sulfates in the same terminal glucose residue. Glycoside 2 has an unusual non-holostane aglycone with 18(16)-lactone and a unique 7,8-epoxy fragment. Cytotoxic activities of compounds 1-10 against several mouse cell lines such as Ehrlich ascites carcinoma cells, neuroblastoma Neuro 2A, normal epithelial JB-6 cells, and erythrocytes were quite different depending both on structural peculiarities of these glycosides and the type of cells subjected to their actions. Psolusoside L (5), pentaoside, with three sulfate groups at C-6 of two glucose and one 3-O-methylglucose residue and holostane aglycone, is the most active compound in the series. The presence of a sulfate group at C-2 of the terminal glucose residue attached to C-4 of the first (xylose) residue significantly decreases activities of the corresponding glycosides. Psolusosides of group B (1, 2, and known psolusoside B) are inactive in all tests due to the presence of non-holostane aglycones and tetrasaccharide-branched sugar chains sulfated by C-2 of Glc4.
Collapse
|
21
|
Sanina N. Vaccine Adjuvants Derived from Marine Organisms. Biomolecules 2019; 9:E340. [PMID: 31382606 PMCID: PMC6723903 DOI: 10.3390/biom9080340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Vaccine adjuvants help to enhance the immunogenicity of weak antigens. The adjuvant effect of certain substances was noted long ago (the 40s of the last century), and since then a large number of adjuvants belonging to different groups of chemicals have been studied. This review presents research data on the nonspecific action of substances originated from marine organisms, their derivatives and complexes, united by the name 'adjuvants'. There are covered the mechanisms of their action, safety, as well as the practical use of adjuvants derived from marine hydrobionts in medical immunology and veterinary medicine to create modern vaccines that should be non-toxic and efficient. The present review is intended to briefly describe some important achievements in the use of marine resources to solve this important problem.
Collapse
Affiliation(s)
- Nina Sanina
- Department of Biochemistry, Microbiology and Biotechnology, School of Natural Sciences, Far Eastern, Federal University, Sukhanov Str., 8, Vladivostok 690091, Russia.
| |
Collapse
|
22
|
Silchenko AS, Kalinovsky AI, Avilov SA, Kalinin VI, Andrijaschenko PV, Dmitrenok PS, Popov RS, Chingizova EA, Ermakova SP, Malyarenko OS. Structures and Bioactivities of Six New Triterpene Glycosides, Psolusosides E, F, G, H, H 1, and I and the Corrected Structure of Psolusoside B from the Sea Cucumber Psolus fabricii. Mar Drugs 2019; 17:md17060358. [PMID: 31207953 PMCID: PMC6627558 DOI: 10.3390/md17060358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 01/30/2023] Open
Abstract
Seven sulfated triterpene glycosides, psolusosides B (1), E (2), F (3), G (4), H (5), H1 (6), and I (7), along with earlier known psolusoside A and colochiroside D have been isolated from the sea cucumber Psolus fabricii collected in the Sea of Okhotsk. Herein, the structure of psolusoside B (1), elucidated by us in 1989 as a monosulfated tetraoside, has been revised with application of modern NMR and particularly MS data and proved to be a disulfated tetraoside. The structures of other glycosides were elucidated by 2D NMR spectroscopy and HR-ESI mass-spectrometry. Psolusosides E (2), F (3), and G (4) contain holostane aglycones identical to each other and differ in their sugar compositions and the quantity and position of sulfate groups in linear tetrasaccharide carbohydrate moieties. Psolusosides H (5) and H1 (6) are characterized by an unusual sulfated trisaccharide carbohydrate moiety with the glucose as the second sugar unit. Psolusoside I (7) has an unprecedented branched tetrasaccharide disulfated carbohydrate moiety with the xylose unit in the second position of the chain. The cytotoxic activities of the compounds 2-7 against several mouse cell lines-ascite form of Ehrlich carcinoma, neuroblastoma Neuro 2A, normal epithelial JB-6 cells, and erythrocytes-were quite different, at that hemolytic effects of the tested compounds were higher than their cytotoxicity against other cells, especially against the ascites of Ehrlich carcinoma. Interestingly, psolusoside G (4) was not cytotoxic against normal JB-6 cells but demonstrated high activity against Neuro 2A cells. The cytotoxic activity against human colorectal adenocarcinoma HT-29 cells and the influence on the colony formation and growth of HT-29 cells of compounds 1-3, 5-7 and psolusoside A was checked. The highest inhibitory activities were demonstrated by psolusosides E (2) and F (3).
Collapse
Affiliation(s)
- Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Anatoly I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Sergey A Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Vladimir I Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Pelageya V Andrijaschenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Roman S Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Ekaterina A Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| |
Collapse
|
23
|
Wang Z, Cui J, Song J, Gou M, Wang H, Gao K, Qiu X, Wang X, Chang Y. Integration of small RNAs and mRNAs by high-throughput sequencing reveals a complex regulatory network in Chinese sea cucumber, Russian sea cucumber and their hybrids. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:1-13. [DOI: 10.1016/j.cbd.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 11/30/2022]
|
24
|
Distribution of Saponins in the Sea Cucumber Holothuria lessoni; the Body Wall Versus the Viscera, and Their Biological Activities. Mar Drugs 2018; 16:md16110423. [PMID: 30388793 PMCID: PMC6266130 DOI: 10.3390/md16110423] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022] Open
Abstract
Sea cucumbers are an important ingredient of traditional folk medicine in many Asian countries, which are well-known for their medicinal, nutraceutical, and food values due to producing an impressive range of distinctive natural bioactive compounds. Triterpene glycosides are the most abundant and prime secondary metabolites reported in this species. They possess numerous biological activities ranging from anti-tumour, wound healing, hypolipidemia, pain relieving, the improvement of nonalcoholic fatty livers, anti-hyperuricemia, the induction of bone marrow hematopoiesis, anti-hypertension, and cosmetics and anti-ageing properties. This study was designed to purify and elucidate the structure of saponin contents of the body wall of sea cucumber Holothurialessoni and to compare the distribution of saponins of the body wall with that of the viscera. The body wall was extracted with 70% ethanol, and purified by a liquid-liquid partition chromatography, followed by isobutanol extraction. A high-performance centrifugal partition chromatography (HPCPC) was conducted on the saponin-enriched mixture to obtain saponins with a high purity. The resultant purified saponins were analyzed using MALDI-MS/MS and ESI-MS/MS. The integrated and hyphenated MS and HPCPC analyses revealed the presence of 89 saponin congeners, including 35 new and 54 known saponins, in the body wall in which the majority of glycosides are of the holostane type. As a result, and in conjunction with existing literature, the structure of four novel acetylated saponins, namely lessoniosides H, I, J, and K were characterized. The identified triterpene glycosides showed potent antifungal activities against tested fungi, but had no antibacterial effects on the bacterium Staphylococcus aureus. The presence of a wide range of saponins with potential applications is promising for cosmeceutical, medicinal, and pharmaceutical products to improve human health.
Collapse
|
25
|
Claereboudt EJS, Eeckhaut I, Lins L, Deleu M. How different sterols contribute to saponin tolerant plasma membranes in sea cucumbers. Sci Rep 2018; 8:10845. [PMID: 30022094 PMCID: PMC6052070 DOI: 10.1038/s41598-018-29223-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Sea cucumbers produce saponins as a chemical defense mechanism, however their cells can tolerate the cytotoxic nature of these chemicals. To elucidate the molecular mechanisms behind this tolerance a suite of complementary biophysical tools was used, firstly using liposomes for in vitro techniques then using in silico approaches for a molecular-level insight. The holothuroid saponin Frondoside A, caused significantly less permeabilization in liposomes containing a Δ7 holothuroid sterol than those containing cholesterol and resulted in endothermic interactions versus exothermic interactions with cholesterol containing liposomes. Lipid phases simulations revealed that Frondoside A has an agglomerating effect on cholesterol domains, however, induced small irregular Δ7 sterol clusters. Our results suggest that the structural peculiarities of holothuroid sterols provide sea cucumbers with a mechanism to mitigate the sterol-agglomerating effect of saponins, and therefore to protect their cells from the cytotoxicity of the saponins they produce.
Collapse
Affiliation(s)
- Emily J S Claereboudt
- Biology of marine organisms and biomimetics, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium
- Laboratory of molecular biophysics of interfaces, Gembloux Agro-Bio Tech, University of Liege, B-5030, Gembloux, Belgium
| | - Igor Eeckhaut
- Biology of marine organisms and biomimetics, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium
| | - Laurence Lins
- Laboratory of molecular biophysics of interfaces, Gembloux Agro-Bio Tech, University of Liege, B-5030, Gembloux, Belgium
| | - Magali Deleu
- Laboratory of molecular biophysics of interfaces, Gembloux Agro-Bio Tech, University of Liege, B-5030, Gembloux, Belgium.
| |
Collapse
|
26
|
Yun SH, Sim EH, Han SH, Han JY, Kim SH, Silchenko AS, Stonik VA, Park JI. Holotoxin A₁ Induces Apoptosis by Activating Acid Sphingomyelinase and Neutral Sphingomyelinase in K562 and Human Primary Leukemia Cells. Mar Drugs 2018; 16:md16040123. [PMID: 29642569 PMCID: PMC5923410 DOI: 10.3390/md16040123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Marine triterpene glycosides are attractive candidates for the development of anticancer agents. Holotoxin A1 is a triterpene glycoside found in the edible sea cucumber, Apostichopus (Stichopus) japonicus. We previously showed that cladoloside C2, the 25(26)-dihydro derivative of holotoxin A1, induced apoptosis in human leukemia cells by activating ceramide synthase 6. Thus, we hypothesized that holotoxin A1, which is structurally similar to cladoloside C2, might induce apoptosis in human leukemia cells through the same molecular mechanism. In this paper, we compared holotoxin A1 and cladoloside C2 for killing potency and mechanism of action. We found that holotoxin A1 induced apoptosis more potently than cladoloside C2. Moreover, holotoxin A1-induced apoptosis in K562 cells by activating caspase-8 and caspase-3, but not by activating caspase-9. During holotoxin A1 induced apoptosis, acid sphingomyelinase (SMase) and neutral SMase were activated in both K562 cells and human primary leukemia cells. Specifically inhibiting acid SMase and neutral SMаse with chemical inhibitors or siRNAs significantly inhibited holotoxin A1–induced apoptosis. These results indicated that holotoxin A1 might induce apoptosis by activating acid SMase and neutral SMase. In conclusion, holotoxin A1 represents a potential anticancer agent for treating leukemia. Moreover, the aglycone structure of marine triterpene glycosides might affect the mechanism involved in inducing apoptosis.
Collapse
Affiliation(s)
- Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Eun-Hye Sim
- Department of Biochemistry, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Sang-Heum Han
- Department of Biochemistry, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Sung-Hyun Kim
- Department of Internal Medicine, Dong-A University College of Medicine, Busan 49201, Korea.
| | - Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan 49201, Korea.
| |
Collapse
|
27
|
Mitu SA, Bose U, Suwansa-Ard S, Turner LH, Zhao M, Elizur A, Ogbourne SM, Shaw PN, Cummins SF. Evidence for a Saponin Biosynthesis Pathway in the Body Wall of the Commercially Significant Sea Cucumber Holothuria scabra. Mar Drugs 2017; 15:E349. [PMID: 29112144 PMCID: PMC5706039 DOI: 10.3390/md15110349] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 01/31/2023] Open
Abstract
The sea cucumber (phylum Echinodermata) body wall is the first line of defense and is well known for its production of secondary metabolites; including vitamins and triterpenoid glycoside saponins that have important ecological functions and potential benefits to human health. The genes involved in the various biosynthetic pathways are unknown. To gain insight into these pathways in an echinoderm, we performed a comparative transcriptome analysis and functional annotation of the body wall and the radial nerve of the sea cucumber Holothuria scabra; to define genes associated with body wall metabolic functioning and secondary metabolite biosynthesis. We show that genes related to signal transduction mechanisms were more highly represented in the H. scabra body wall, including genes encoding enzymes involved in energy production. Eight of the core triterpenoid biosynthesis enzymes were found, however, the identity of the saponin specific biosynthetic pathway enzymes remains unknown. We confirm the body wall release of at least three different triterpenoid saponins using solid phase extraction followed by ultra-high-pressure liquid chromatography-quadrupole time of flight-mass spectrometry. The resource we have established will help to guide future research to explore secondary metabolite biosynthesis in the sea cucumber.
Collapse
Affiliation(s)
- Shahida Akter Mitu
- Genecology Research Center, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.
| | - Utpal Bose
- Genecology Research Center, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.
- CSIRO Agriculture and Food, St Lucia, Brisbane 4067, Queensland, Australia.
- School of Pharmacy, The University of Queensland, Brisbane 4067, Queensland, Australia.
| | - Saowaros Suwansa-Ard
- Genecology Research Center, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.
| | - Luke H Turner
- Genecology Research Center, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.
| | - Min Zhao
- Genecology Research Center, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.
| | - Abigail Elizur
- Genecology Research Center, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.
| | - Steven M Ogbourne
- Genecology Research Center, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.
| | - Paul Nicholas Shaw
- School of Pharmacy, The University of Queensland, Brisbane 4067, Queensland, Australia.
| | - Scott F Cummins
- Genecology Research Center, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.
| |
Collapse
|
28
|
Mondol MAM, Shin HJ, Rahman MA, Islam MT. Sea Cucumber Glycosides: Chemical Structures, Producing Species and Important Biological Properties. Mar Drugs 2017; 15:md15100317. [PMID: 29039760 PMCID: PMC5666425 DOI: 10.3390/md15100317] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 01/29/2023] Open
Abstract
Sea cucumbers belonging to echinoderm are traditionally used as tonic food in China and other Asian countries. They produce abundant biologically active triterpene glycosides. More than 300 triterpene glycosides have been isolated and characterized from various species of sea cucumbers, which are classified as holostane and nonholostane depending on the presence or absence of a specific structural unit γ(18,20)-lactone in the aglycone. Triterpene glycosides contain a carbohydrate chain up to six monosaccharide units mainly consisting of d-xylose, 3-O-methy-d-xylose, d-glucose, 3-O-methyl-d-glucose, and d-quinovose. Cytotoxicity is the common biological property of triterpene glycosides isolated from sea cucumbers. Besides cytotoxicity, triterpene glycosides also exhibit antifungal, antiviral and hemolytic activities. This review updates and summarizes our understanding on diverse chemical structures of triterpene glycosides from various species of sea cucumbers and their important biological activities. Mechanisms of action and structural-activity relationships (SARs) of sea cucumber glycosides are also discussed briefly.
Collapse
Affiliation(s)
| | - Hee Jae Shin
- Marine Natural Products Laboratory, Korea Institute of Ocean Science and Technology, 787 Haeanro, Ansan 427-744, Korea.
| | - M Aminur Rahman
- World Fisheries University Pilot Programme, Pukyong National University (PKNU), 45 Yongso-ro, Nam-gu, Busan 48513, Korea.
| | - Mohamad Tofazzal Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| |
Collapse
|
29
|
Popov RS, Ivanchina NV, Silchenko AS, Avilov SA, Kalinin VI, Dolmatov IY, Stonik VA, Dmitrenok PS. Metabolite Profiling of Triterpene Glycosides of the Far Eastern Sea Cucumber Eupentacta fraudatrix and Their Distribution in Various Body Components Using LC-ESI QTOF-MS. Mar Drugs 2017; 15:md15100302. [PMID: 28974049 PMCID: PMC5666410 DOI: 10.3390/md15100302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/21/2017] [Accepted: 09/30/2017] [Indexed: 12/02/2022] Open
Abstract
The Far Eastern sea cucumber Eupentacta fraudatrix is an inhabitant of shallow waters of the south part of the Sea of Japan. This animal is an interesting and rich source of triterpene glycosides with unique chemical structures and various biological activities. The objective of this study was to investigate composition and distribution in various body components of triterpene glycosides of the sea cucumber E. fraudatrix. We applied LC-ESI MS (liquid chromatography–electrospray mass spectrometry) of whole body extract and extracts of various body components for metabolic profiling and structure elucidation of triterpene glycosides from the E. fraudatrix. Totally, 54 compounds, including 26 sulfated, 18 non-sulfated and 10 disulfated glycosides were detected and described. Triterpene glycosides from the body walls, gonads, aquapharyngeal bulbs, guts and respiratory trees were extracted separately and the distributions of the detected compounds in various body components were analyzed. Series of new glycosides with unusual structural features were described in E. fraudatrix, which allow clarifying the biosynthesis of these compounds. Comparison of the triterpene glycosides contents from the five different body components revealed that the profiles of triterpene glycosides were qualitatively similar, and only some quantitative variabilities for minor compounds were observed.
Collapse
Affiliation(s)
- Roman S Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia.
| | - Natalia V Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia.
| | - Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia.
| | - Sergey A Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia.
| | - Vladimir I Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia.
| | - Igor Yu Dolmatov
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo St., Vladivostok 690041, Russia.
- School of Natural Science, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690090, Russia.
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia.
- School of Natural Science, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690090, Russia.
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok 690022, Russia.
| |
Collapse
|
30
|
Silchenko AS, Kalinovsky AI, Avilov SA, Kalinin VI, Andrijaschenko PV, Dmitrenok PS, Chingizova EA, Ermakova SP, Malyarenko OS, Dautova TN. Nine New Triterpene Glycosides, Magnumosides A₁-A₄, B₁, B₂, C₁, C₂ and C₄, from the Vietnamese Sea Cucumber Neothyonidium (=Massinium) magnum: Structures and Activities against Tumor Cells Independently and in Synergy with Radioactive Irradiation. Mar Drugs 2017; 15:E256. [PMID: 28813020 PMCID: PMC5577610 DOI: 10.3390/md15080256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 11/29/2022] Open
Abstract
Nine new sulfated triterpene glycosides, magnumosides A₁ (1), A₂ (2), A₃ (3), A₄ (4), B₁ (5), B₂ (6), C₁ (7), C₂ (8) and C₄ (9) as well as a known colochiroside B₂ (10) have been isolated from the tropical Indo-West Pacific sea cucumber Neothynidium (=Massinium) magnum (Phyllophoridae, Dendrochirotida) collected in the Vietnamese shallow waters. The structures of new glycosides were elucidated by 2D NMR spectroscopy and mass-spectrometry. All the isolated new glycosides were characterized by the non-holostane type lanostane aglycones having 18(16)-lactone and 7(8)-double bond and differed from each other by the side chains and carbohydrate moieties structures. Magnumoside A₁ (1) has unprecedented 20(24)-epoxy-group in the aglycone side chain. Magnumosides of the group A (1-4) contained disaccharide monosulfated carbohydrate moieties, of the group B (5, 6)-tetrasaccharide monosulfated carbohydrate moieties and, finally, of the group C (7-9)-tetrasaccharide disulfated carbohydrate moieties. The cytotoxic activities of the compounds 1-9 against mouse spleen lymphocytes, the ascites form of mouse Ehrlich carcinoma cells, human colorectal carcinoma DLD-1 cells as well as their hemolytic effects have been studied. Interestingly, the erythrocytes were more sensitive to the glycosides action than spleenocytes and cancer cells tested. The compounds 3 and 7 significantly inhibited the colony formation and decreased the size of colonies of DLD-1 cancer cells at non-cytotoxic concentrations. Moreover, the synergism of effects of radioactive irradiation and compounds 3 and 7-9 at subtoxic doses on proliferation of DLD-1 cells was demonstrated.
Collapse
Affiliation(s)
- Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Anatoly I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Sergey A Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Vladimir I Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Pelageya V Andrijaschenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Ekaterina A Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, Vladivostok 690022, Russia.
| | - Tatyana N Dautova
- A.V. Zhirmunsky Institute of Marine Biology Far East Branch of Russian Academy of Sciences, Palchevsky St. 17, Vladivostok 690041, Russia.
| |
Collapse
|
31
|
Nanoparticulate Tubular Immunostimulating Complexes: Novel Formulation of Effective Adjuvants and Antigen Delivery Systems. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4389525. [PMID: 28808657 PMCID: PMC5541816 DOI: 10.1155/2017/4389525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/11/2017] [Accepted: 05/11/2017] [Indexed: 11/27/2022]
Abstract
New generation vaccines, based on isolated antigens, are safer than traditional ones, comprising the whole pathogen. However, major part of purified antigens has weak immunogenicity. Therefore, elaboration of new adjuvants, more effective and safe, is an urgent problem of vaccinology. Tubular immunostimulating complexes (TI-complexes) are a new type of nanoparticulate antigen delivery systems with adjuvant activity. TI-complexes consist of cholesterol and compounds isolated from marine hydrobionts: cucumarioside A2-2 (CDA) from Cucumaria japonica and monogalactosyldiacylglycerol (MGDG) from marine algae or seagrass. These components were selected due to immunomodulatory and other biological activities. Glycolipid MGDG from marine macrophytes comprises a high level of polyunsaturated fatty acids (PUFAs), which demonstrate immunomodulatory properties. CDA is a well-characterized individual compound capable of forming stable complex with cholesterol. Such complexes do not possess hemolytic activity. Ultralow doses of cucumariosides stimulate cell as well as humoral immunity. Therefore, TI-complexes comprising biologically active components turned out to be more effective than the strongest adjuvants: immunostimulating complexes (ISCOMs) and complete Freund's adjuvant. In the present review, we discuss results published in series of our articles on elaboration, qualitative and quantitative composition, ultrastructure, and immunostimulating activity of TI-complexes. The review allows immersion in the history of creating TI-complexes.
Collapse
|
32
|
Yun SH, Shin SW, Stonik VA, Park JI. Ceramide as a Target of Marine Triterpene Glycosides for Treatment of Human Myeloid Leukemia. Mar Drugs 2016; 14:md14110205. [PMID: 27827870 PMCID: PMC5128748 DOI: 10.3390/md14110205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/19/2016] [Accepted: 10/28/2016] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous myeloid clonal disorder exhibiting the accumulation of immature myeloid progenitors in the bone marrow and peripheral blood. Standard AML therapy requires intensive combination chemotherapy, which leads to significant treatment-related toxicity. The search for new, low toxic marine agents, inducing the generation of ceramide in leukemic cells is a new approach to improve the therapy of leukemia. This review focuses on the metabolism of sphingolipids, the role of ceramide in treating leukemia, and the antitumor activity, related to ceramide metabolism, of some marine metabolites, particularly stichoposides, triterpene glycosides extracted from sea cucumbers of the family Stichopodiidae.
Collapse
Affiliation(s)
- Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, 32 Daesingongwon-ro, Seo-Gu, Busan 49201, Korea.
| | - Sung-Won Shin
- Department of Biochemistry, Dong-A University College of Medicine, 32 Daesingongwon-ro, Seo-Gu, Busan 49201, Korea.
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia.
- Department of Bioorganic Chemistry and Biotechnology, School of Natural Sciences, Far East Federal University, Vladivostok 690091, Russia.
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, 32 Daesingongwon-ro, Seo-Gu, Busan 49201, Korea.
| |
Collapse
|
33
|
Kalinin VI, Silchenko AS, Avilov SA. Taxonomic significance and ecological role of triterpene glycosides from holothurians. BIOL BULL+ 2016. [DOI: 10.1134/s1062359016060108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Structures and Biogenesis of Fallaxosides D₄, D₅, D₆ and D₇, Trisulfated Non-Holostane Triterpene Glycosides from the Sea Cucumber Cucumaria fallax. Molecules 2016; 21:molecules21070939. [PMID: 27447601 PMCID: PMC6274125 DOI: 10.3390/molecules21070939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 11/17/2022] Open
Abstract
Four new trisulfated triterpene glycosides, fallaxosides D4 (1), D5 (2), D6 (3) and D7 (4) have been isolated from the sea cucumber Cucumaria fallax (Cucumariidae, Dendrochirotida). The structures of the glycosides have been elucidated by 2D NMR spectroscopy and HRESIMS. All the glycosides have the lanostane aglycones of a rare non-holostane type with 7(8)-, 8(9)- or 9(11)-double bonds, one or two hydroxyl groups occupying unusual positions in the polycyclic nucleus and shortened or normal side chains. The pentasaccharide carbohydrate moieties of 1–4 have three sulfate groups. The cytotoxic activity of glycosides 1–4 against the ascite form of mouse Ehrlich carcinoma cells and mouse spleen lymphocytes and hemolytic activity against mouse erythrocytes have been studied.
Collapse
|
35
|
Reunov AA, Reunov AV, Pimenova EA, Reunova YA, Menchinskaya ES, Lapshina LA, Aminin DL. Cucumarioside A2-2 stimulates apoptotic necrosis in Ehrlich ascites carcinoma cells. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2015; 462:161-163. [PMID: 26164340 DOI: 10.1134/s0012496615020040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Indexed: 06/04/2023]
Affiliation(s)
- A A Reunov
- Zhirmunsky Institute of Marine Biology, Far East Division, Russian Academy of Sciences, Vladivostok, 690041, Russia,
| | | | | | | | | | | | | |
Collapse
|
36
|
Eeckhaut I, Caulier G, Brasseur L, Flammang P, Gerbaux P, Parmentier E. Effects of Holothuroid Ichtyotoxic Saponins on the Gills of Free-Living Fishes and Symbiotic Pearlfishes. THE BIOLOGICAL BULLETIN 2015; 228:253-265. [PMID: 26124451 DOI: 10.1086/bblv228n3p253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Several carapid fishes, known as pearlfishes, are endosymbiotic in holothuroids and asteroids. These echinoderms contain a strong concentration of saponins that are efficient membranolytic repellents to predators. We compared the effects of exposure to saponins from the sea cucumber body wall and from the Cuvierian tubules on the behavior and gill ultrastructure of pearlfishes and free-living fishes. Saponins were extracted from the body wall of two holothuroids, the Mediterranean Holothuria forskali and the tropical Bohadschia atra, and from the water surrounding the Cuvierian tubules of B. atra. Five species of carapids that live in symbiosis with holothuroids and seven species of free-living fishes were exposed to these extracts. The free-living fishes exhibited a stress response and died about 45 times faster than pearlfishes when exposed to the same quantity of saponins. Cuvierian tubules and saponins extracted from the body wall were lethal to the free-living fishes, whereas the carapids were much less sensitive. The carapids did not exhibit a stress response. The high toxicity shown by Cuvierian tubules was not explained by the nature of the saponins that were identified by mass spectrometry, but it is likely due to the higher concentration of saponins in the tubules. Histology and scanning and transmission electron microscopy of the gills of the free-living fishes and pearlfishes showed that saponins act at the level of the secondary lamellae where they induce the detachment of the epithelia, create edema at the level of the epithelia, and induce pores in the epithelial cells that lead to their destruction and the invasion of inner cells (pillar cells and red blood cells). This sequence of events happens 5 min after saponin exposure in free-living fishes and after 1 h in carapids.
Collapse
Affiliation(s)
- Igor Eeckhaut
- Biology of Marine Organisms and Biomimetics, University of Mons, B-7000 Mons, Belgium;
| | - Guillaume Caulier
- Biology of Marine Organisms and Biomimetics, University of Mons, B-7000 Mons, Belgium
| | - Lola Brasseur
- Biology of Marine Organisms and Biomimetics, University of Mons, B-7000 Mons, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics, University of Mons, B-7000 Mons, Belgium
| | - Pascal Gerbaux
- Synthesis and Organic Mass Spectrometry, University of Mons, B-7000 Mons, Belgium; and
| | - Eric Parmentier
- Laboratory of Morphology, University of Liège, B6 Sart Tilman, B-4000 Liège, Belgium
| |
Collapse
|
37
|
Aminin DL, Menchinskaya ES, Pisliagin EA, Silchenko AS, Avilov SA, Kalinin VI. Anticancer activity of sea cucumber triterpene glycosides. Mar Drugs 2015; 13:1202-23. [PMID: 25756523 PMCID: PMC4377980 DOI: 10.3390/md13031202] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/16/2015] [Accepted: 02/25/2015] [Indexed: 11/16/2022] Open
Abstract
Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata). They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-κB, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor), Akt (protein kinase B), ERK (extracellular signal-regulated kinases), FAK (focal adhesion kinase), MMP-9 (matrix metalloproteinase-9) and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics.
Collapse
Affiliation(s)
- Dmitry L Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 letya Vladivostoka, 159, Vladivostok 690022, Russia.
| | - Ekaterina S Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 letya Vladivostoka, 159, Vladivostok 690022, Russia.
| | - Evgeny A Pisliagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 letya Vladivostoka, 159, Vladivostok 690022, Russia.
| | - Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 letya Vladivostoka, 159, Vladivostok 690022, Russia.
| | - Sergey A Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 letya Vladivostoka, 159, Vladivostok 690022, Russia.
| | - Vladimir I Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 letya Vladivostoka, 159, Vladivostok 690022, Russia.
| |
Collapse
|
38
|
Structure elucidation of new acetylated saponins, Lessoniosides A, B, C, D, and E, and non-acetylated saponins, Lessoniosides F and G, from the viscera of the sea cucumber Holothuria lessoni. Mar Drugs 2015; 13:597-617. [PMID: 25603350 PMCID: PMC4306954 DOI: 10.3390/md13010597] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/01/2015] [Indexed: 11/25/2022] Open
Abstract
Sea cucumbers produce numerous compounds with a wide range of chemical structural diversity. Among these, saponins are the most diverse and include sulfated, non-sulfated, acetylated and methylated congeners with different aglycone and sugar moieties. In this study, MALDI and ESI tandem mass spectrometry, in the positive ion mode, were used to elucidate the structure of new saponins extracted from the viscera of H. lessoni. Fragmentation of the aglycone provided structural information on the presence of the acetyl group. The presence of the O-acetyl group was confirmed by observing the mass transition of 60 u corresponding to the loss of a molecule of acetic acid. Ion fingerprints from the glycosidic cleavage provided information on the mass of the aglycone (core), and the sequence and type of monosaccharides that constitute the sugar moiety. The tandem mass spectra of the saponin precursor ions [M + Na]+ provided a wealth of detailed structural information on the glycosidic bond cleavages. As a result, and in conjunction with existing literature, we characterized the structure of five new acetylated saponins, Lessoniosides A–E, along with two non-acetylated saponins Lessoniosides F and G at m/z 1477.7, which are promising candidates for future drug development. The presented strategy allows a rapid, reliable and complete analysis of native saponins.
Collapse
|
39
|
Honey-Escandón M, Arreguín-Espinosa R, Solís-Marín FA, Samyn Y. Biological and taxonomic perspective of triterpenoid glycosides of sea cucumbers of the family Holothuriidae (Echinodermata, Holothuroidea). Comp Biochem Physiol B Biochem Mol Biol 2014; 180:16-39. [PMID: 25263252 DOI: 10.1016/j.cbpb.2014.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Since the discovery of saponins in sea cucumbers, more than 150 triterpene glycosides have been described for the class Holothuroidea. The family Holothuriidae has been increasingly studied in search for these compounds. With many species awaiting recognition and formal description this family currently consists of five genera and the systematics at the species-level taxonomy is, however, not yet fully understood. We provide a bibliographic review of the triterpene glycosides that has been reported within the Holothuriidae and analyzed the relationship of certain compounds with the presence of Cuvierian tubules. We found 40 species belonging to four genera and 121 compounds. Holothurin A and B are the most common saponins for Actinopyga, Holothuria, and Pearsonothuria. The genus Bohadschia presents mainly bivittoside C and D. Actinopyga has only sulfated saponins mainly oxidized, Bohadschia non-sulfated ones mainly non-oxidized, Holothuria and Pearsonothuria contain both types of compounds, mainly oxidized. Within the genus Holothuria, the subgenus Panningothuria only has non-sulfated saponins. The presence of sulfated and non-sulfated compounds seemingly relates to the expellability or the absence of Cuvierian tubules and the temporal or permanent concealing habits of the species. Our study concludes that better insights into the systematic distribution of saponins in Holothuriidae will only be possible if the identifications of the investigated species are confirmed by a taxonomist, especially in this group wherein cryptic species and variation between life-history stages are common and yet poorly understood. Understanding of saponin distribution within the Holothuriidae would also benefit from a stabilization of triterpene glycoside nomenclature.
Collapse
Affiliation(s)
- Magali Honey-Escandón
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, C.P. 04510 México, D. F., Mexico.
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, C.P. 04510 México, D. F., Mexico
| | - Francisco Alonso Solís-Marín
- Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apartado Postal 70-350, C.P. 04510 México, D. F., Mexico
| | - Yves Samyn
- Scientific Service of Heritage, Invertebrates Collections, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
| |
Collapse
|
40
|
Bahrami Y, Zhang W, Chataway T, Franco C. Structure elucidation of five novel isomeric saponins from the viscera of the sea cucumber Holothuria lessoni. Mar Drugs 2014; 12:4439-73. [PMID: 25110919 PMCID: PMC4145325 DOI: 10.3390/md12084439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022] Open
Abstract
Sea cucumbers are prolific producers of a wide range of bioactive compounds. This study aimed to purify and characterize one class of compound, the saponins, from the viscera of the Australian sea cucumber Holothuria lessoni. The saponins were obtained by ethanolic extraction of the viscera and enriched by a liquid-liquid partition process and adsorption column chromatography. A high performance centrifugal partition chromatography (HPCPC) was applied to the saponin-enriched mixture to obtain saponins with high purity. The resultant purified saponins were profiled using MALDI-MS/MS and ESI-MS/MS which revealed the structure of isomeric saponins to contain multiple aglycones and/or sugar residues. We have elucidated the structure of five novel saponins, Holothurins D/E and Holothurinosides X/Y/Z, along with seven reported triterpene glycosides, including sulfated and non-sulfated saponins containing a range of aglycones and sugar moieties, from the viscera of H. lessoni. The abundance of novel compounds from this species holds promise for biotechnological applications.
Collapse
Affiliation(s)
- Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia.
| | - Wei Zhang
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia.
| | - Tim Chataway
- Flinders Proteomics Facility, School of Medicine, Flinders University, Adelaide, SA 5042, Australia.
| | - Chris Franco
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia.
| |
Collapse
|
41
|
Wang J, Han H, Chen X, Yi Y, Sun H. Cytotoxic and apoptosis-inducing activity of triterpene glycosides from Holothuria scabra and Cucumaria frondosa against HepG2 cells. Mar Drugs 2014; 12:4274-90. [PMID: 25062508 PMCID: PMC4145316 DOI: 10.3390/md12084274] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 12/19/2022] Open
Abstract
The cytotoxic effects of thirteen triterpene glycosides from Holothuria scabra Jaeger and Cucumaria frondosa Gunnerus (Holothuroidea) against four human cell lines were detected and their cytotoxicity-structure relationships were established. The apoptosis-inducing activity of a more potent glycoside echinoside A (1) in HepG2 cells was further investigated by determining its effect on the morphology, mitochondrial transmembrane potential (Δψm) and mRNA expression levels of the apoptosis-related genes. The results showed that the number of glycosyl residues in sugar chains and the side chain of aglycone could affect their cytotoxicity towards tumor cells and selective cytotoxicity. 1 significantly inhibited cell viability and induced apoptosis in HepG2 cells. 1 also markedly decreased the Δψm and Bcl-2/Bax mRNA express ratio, and up-regulated the mRNA expression levels of Caspase-3, Caspase-8 and Caspase-9 in HepG2 cells. Therefore, 1 induced apoptosis in HepG2 cells through both intrinsic and extrinsic pathway. These findings could potentially promote the usage of these glycosides as leading compounds for developing new antitumor drugs.
Collapse
Affiliation(s)
- Juanjuan Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hua Han
- School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiangfeng Chen
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yanghua Yi
- Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Hongxiang Sun
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
42
|
Bahrami Y, Zhang W, Franco C. Discovery of novel saponins from the viscera of the sea cucumber Holothuria lessoni. Mar Drugs 2014; 12:2633-67. [PMID: 24821624 PMCID: PMC4052309 DOI: 10.3390/md12052633] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 12/29/2022] Open
Abstract
Sea cucumbers, sometimes referred to as marine ginseng, produce numerous compounds with diverse functions and are potential sources of active ingredients for agricultural, nutraceutical, pharmaceutical and cosmeceutical products. We examined the viscera of an Australian sea cucumber Holothuria lessoni Massin et al. 2009, for novel bioactive compounds, with an emphasis on the triterpene glycosides, saponins. The viscera were extracted with 70% ethanol, and this extract was purified by a liquid-liquid partition process and column chromatography, followed by isobutanol extraction. The isobutanol saponin-enriched mixture was further purified by high performance centrifugal partition chromatography (HPCPC) with high purity and recovery. The resultant purified polar samples were analyzed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)/MS and electrospray ionization mass spectrometry (ESI-MS)/MS to identify saponins and characterize their molecular structures. As a result, at least 39 new saponins were identified in the viscera of H. lessoni with a high structural diversity, and another 36 reported triterpene glycosides, containing different aglycones and sugar moieties. Viscera samples have provided a higher diversity and yield of compounds than observed from the body wall. The high structural diversity and novelty of saponins from H. lessoni with potential functional activities presents a great opportunity to exploit their applications for industrial, agricultural and pharmaceutical use.
Collapse
Affiliation(s)
- Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide 5001, SA 5042, Australia.
| | - Wei Zhang
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide 5001, SA 5042, Australia.
| | - Chris Franco
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide 5001, SA 5042, Australia.
| |
Collapse
|
43
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andryjaschenko PV, Dmitrenok PS, Kalinin VI, Yurchenko EA, Dautov SS. Structures of Violaceusosides C, D, E and G, Sulfated Triterpene Glycosides from the Sea Cucumber Pseudocolochirus violaceus (Cucumariidae, Dendrochirotida). Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Four new triterpene glycosides, violaceusosides C (1), D (2), E (3) and G (4) have been isolated from the sea cucumber Pseudocolochirus violaceus (Cucumariidae, Dendrochirotida). Eight known glycosides, DS-holothurin A and holothurinoside A, isolated earlier from Holothuria forskalii (order Aspidochirotida); and violaceuside A, lefevreoside C, philinopside E, intercedenside B, violaceuside II and liovilloside A isolated earlier from representatives of the family Cucumariidae, order Dendrochirotida have also been found in P. violaceus. The chemical structures of the glycosides were elucidated by 2D NMR spectroscopy and mass spectrometry. Violaceusosides C (1), D (2), E (3) and G (4) have holostane-type aglycones and tetrasaccharide linear carbohydrate chains differing in the sugar composition and the number and position of sulfate groups. Violaceusosides E (3) and G (4) are characterized by the presence of a sulfate group at C-3 of the quinovose residue that is very rare among sea cucumber glycosides. Cytotoxic activities of the glycosides 1–4 against cells of the ascite form of mouse Ehrlich carcinoma and hemolytic activities against mouse erythrocytes have been studied. Violaceusosides C (1) and D (2) demonstrated moderate cytotoxic and hemolytic effects, while violaceusosides E (3) and G (4) have more powerful activities.
Collapse
Affiliation(s)
- Alexandra S. Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Sergey A. Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Pelageya V. Andryjaschenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Vladimir I. Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation
| | - Salim S. Dautov
- A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russian Federation
| |
Collapse
|
44
|
Stonik VA, Fedorov SN. Marine low molecular weight natural products as potential cancer preventive compounds. Mar Drugs 2014; 12:636-71. [PMID: 24473167 PMCID: PMC3944507 DOI: 10.3390/md12020636] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 12/17/2022] Open
Abstract
Due to taxonomic positions and special living environments, marine organisms produce secondary metabolites that possess unique structures and biological activities. This review is devoted to recently isolated and/or earlier described marine compounds with potential or established cancer preventive activities, their biological sources, molecular mechanisms of their action, and their associations with human health and nutrition. The review covers literature published in 2003–2013 years and focuses on findings of the last 2 years.
Collapse
Affiliation(s)
- Valentin A Stonik
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690950, Russia.
| | - Sergey N Fedorov
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Prospect 100 let Vladivostoku, 159, Vladivostok 690950, Russia.
| |
Collapse
|
45
|
Yano A, Abe A, Aizawa F, Yamada H, Minami K, Matsui M, Kishi M. The effect of eating sea cucumber jelly on Candida load in the oral cavity of elderly individuals in a nursing home. Mar Drugs 2013; 11:4993-5007. [PMID: 24335524 PMCID: PMC3877898 DOI: 10.3390/md11124993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/15/2013] [Accepted: 11/26/2013] [Indexed: 11/23/2022] Open
Abstract
We conducted a double-blind randomized controlled study of elderly individuals in a nursing home to investigate the effect of the consumption of jelly containing sea cucumber on their oral Candida load. The jelly contained a hydrolysate of the sea cucumber Stichopus japonicus, which contained triterpene glycosides called holotoxins. The holotoxins worked as a fungicide, and their minimum inhibitory concentrations for Candida albicans were 7 µg/mL. Eight individuals in the nursing home took the sea cucumber jelly for a week and their oral Candida were counted before and after the intervention. Nine individuals took a control jelly without S. japonicus. The sea cucumber jelly showed inhibitory effects on the oral Candida. Thus, daily consumption of the S. japonicus jelly has the potential to reduce the oral Candida load in the elderly in nursing homes.
Collapse
Affiliation(s)
- Akira Yano
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-197-68-2911; Fax: +81-197-68-3881
| | - Akiko Abe
- Division of Oral Health, Iwate Medical University School of Dentistry, Morioka 020-8505, Japan; E-Mails: (A.A.); (F.A.); (K.M.); (M.M.); (M.K.)
| | - Fumie Aizawa
- Division of Oral Health, Iwate Medical University School of Dentistry, Morioka 020-8505, Japan; E-Mails: (A.A.); (F.A.); (K.M.); (M.M.); (M.K.)
| | - Hidetoshi Yamada
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan; E-Mail:
| | - Kentaro Minami
- Division of Oral Health, Iwate Medical University School of Dentistry, Morioka 020-8505, Japan; E-Mails: (A.A.); (F.A.); (K.M.); (M.M.); (M.K.)
| | - Miki Matsui
- Division of Oral Health, Iwate Medical University School of Dentistry, Morioka 020-8505, Japan; E-Mails: (A.A.); (F.A.); (K.M.); (M.M.); (M.K.)
| | - Mitsuo Kishi
- Division of Oral Health, Iwate Medical University School of Dentistry, Morioka 020-8505, Japan; E-Mails: (A.A.); (F.A.); (K.M.); (M.M.); (M.K.)
| |
Collapse
|
46
|
Menchinskaya ES, Pislyagin EA, Kovalchyk SN, Davydova VN, Silchenko AS, Avilov SA, Kalinin VI, Aminin DL. Antitumor activity of cucumarioside A2-2. Chemotherapy 2013; 59:181-91. [PMID: 24217558 DOI: 10.1159/000354156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/28/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The cytotoxic activity of sea cucumber glycosides against different types of cells and cell lines, including human tumor cell lines, has been studied for many years. However, the molecular mechanism(s) of the antitumor action of triterpene glycosides on cancer cells remain unclear. This article reports a continuation of investigations of triterpene glycoside cucumarioside A2-2 isolated from the Far-Eastern sea cucumber Cucumaria japonica. It describes a study of glycoside anticancer activity in vivo and glycoside interaction with mouse Ehrlich carcinoma cells in vitro. METHODS The cytotoxicity of cucumarioside A2-2 and its effect on apoptosis, the cell cycle, DNA biosynthesis and p53 activity, and glycoside anticancer action against Ehrlich carcinoma cells were studied. RESULTS Cucumarioside A2-2 influences tumor cell viability at micromolar concentrations. The EC50 for glycoside estimated by nonspecific esterase assay and MTT assay was 2.1 and 2.7 μM, respectively. Cucumarioside A2-2 at a subcytotoxic range of concentrations exhibits a cytostatic effect by blocking cell proliferation and DNA biosynthesis in the S phase. It may induce apoptosis in tumor cells in a caspase-dependent way, bypassing the activation of the p53-dependent segment. CONCLUSION The anticancer and proapoptotic properties of cucumarioside A2-2 may be due to direct interaction of the glycoside with tumor cells. The in vivo anticancer effect of cucumarioside A2-2 may be associated with the ability of the drug to arrest the cell cycle in the synthetic phase and induce programmed tumor cell death.
Collapse
Affiliation(s)
- E S Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Division of the Russian Academy of Sciences, Vladivostok, Russia
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pislyagin E, Dmitrenok P, Gorpenchenko T, Avilov S, Silchenko A, Aminin D. Determination of cucumarioside A2-2 in mouse spleen by radiospectroscopy, MALDI-MS and MALDI-IMS. Eur J Pharm Sci 2013; 49:461-7. [DOI: 10.1016/j.ejps.2013.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 11/24/2022]
|
48
|
Silchenko AS, Kalinovsky AI, Avilov SA, Andryjaschenko PV, Dmitrenok PS, Menchinskaya ES, Aminin DL, Kalinin VI. Structure of cucumarioside I2 from the sea cucumber Eupentacta fraudatrix (Djakonov et Baranova) and cytotoxic and immunostimulatory activities of this saponin and relative compounds. Nat Prod Res 2013; 27:1776-83. [PMID: 23574459 DOI: 10.1080/14786419.2013.778851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new triterpene glycoside cucumarioside I2 (1) has been isolated from holothurian Eupentacta fraudatrix. The structure of 1 was elucidated using extensive NMR spectroscopy ((1)H and (13)C NMR, (1)H-(1)H COSY, 1D TOCSY, HSQC, H2BC, HMBC and NOESY) and MALDI-TOF-MS. Glycoside 1 is a disulfated branched pentaoside having rare 3-O-methyl-D-xylose. Cytotoxic activity of the glycoside 1 and known cucumariosides H (2), A5 (3), A6 (4), B2 (5) and B1 (6) against mouse Ehrlich carcinoma cells and their influence on lysosomal activity of mouse peritoneal macrophages have been studied. Glycosides 1 and 5 possessed low cytotoxicities, glycoside 6 was not cytotoxic while compounds 2, 3 and 4 possessed moderate cytotoxicities. Glycosides 1, 3 and 5 increased the lysosomal activity of macrophages on 15-17% at doses of 1-5 μg/mL. Hence lysosomal activity depends on structures of both aglycone and carbohydrate chain and does not have a direct correlation with cytotoxicities of the glycosides.
Collapse
Affiliation(s)
- Alexandra S Silchenko
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Division of the Russian Academy of Sciences , Pr. 100-letya Vladivostoka 159, 690022 , Vladivostok , Russian Federation
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pislyagin EA, Gladkikh RV, Kapustina II, Kim NY, Shevchenko VP, Nagaev IY, Avilov SA, Aminin DL. Interaction of holothurian triterpene glycoside with biomembranes of mouse immune cells. Int Immunopharmacol 2012; 14:1-8. [PMID: 22683181 DOI: 10.1016/j.intimp.2012.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/21/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
The in vitro interactions between triterpene glycoside, cucumarioside A(2)-2, isolated from the Far-Eastern holothurian Cucumaria japonica, and mouse splenocyte and peritoneal macrophage biomembranes were studied. Multiple experimental approaches were employed, including determination of biomembrane microviscosity, membrane potential and Ca(2+) signaling, and radioligand binding assays. Cucumarioside A(2)-2 exhibited strong cytotoxic effect in the micromolar range of concentrations and showed pronounced immunomodulatory activity in the nanomolar concentration range. It was established that the cucumarioside A(2)-2 effectively interacted with immune cells and increased the cellular biomembrane microviscosity. This interaction led to a dose-dependent reversible shift in cellular membrane potential and temporary biomembrane depolarization; and an increase in [Ca(2+)](i) in the cytoplasm. It is suggested that there are at least two binding sites for [(3)H]-cucumarioside A(2)-2 on cellular membranes corresponding to different biomembrane components: a low affinity site match to membrane cholesterol that is responsible for the cytotoxic properties, and a high affinity site corresponding to a hypothetical receptor that is responsible for immunostimulation.
Collapse
Affiliation(s)
- E A Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Division of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bordbar S, Anwar F, Saari N. High-value components and bioactives from sea cucumbers for functional foods--a review. Mar Drugs 2011; 9:1761-1805. [PMID: 22072996 PMCID: PMC3210605 DOI: 10.3390/md9101761] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/30/2011] [Accepted: 09/08/2011] [Indexed: 12/01/2022] Open
Abstract
Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids. This review is mainly designed to cover the high-value components and bioactives as well as the multiple biological and therapeutic properties of sea cucumbers with regard to exploring their potential uses for functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Sara Bordbar
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: (S.B.); (F.A.)
| | - Farooq Anwar
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: (S.B.); (F.A.)
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: (S.B.); (F.A.)
| |
Collapse
|