1
|
Tridente A. Introducing video content into Scars, Burns & Healing. Scars Burn Heal 2020; 6:2059513120972603. [PMID: 33282340 PMCID: PMC7691894 DOI: 10.1177/2059513120972603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Ascanio Tridente
- Whiston Hospital, St Helens' and Knowsley NHS Trust, Prescot, UK and Sheffield University, Prescot, UK
| |
Collapse
|
2
|
Downregulating Serine Hydroxymethyltransferase 2 Deteriorates Hepatic Ischemia-Reperfusion Injury through ROS/JNK/P53 Signaling in Mice. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2712185. [PMID: 31828098 PMCID: PMC6885790 DOI: 10.1155/2019/2712185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Abstract
Background Serine hydroxymethyltransferase 2 (SHMT2) activity ensures that cells have a survival advantage in ischemic conditions and regulates redox homeostasis. In this study, we aimed to investigate the role of SHMT2 after hepatic ischemia-reperfusion (IR), which involves hypoxia, ischemic conditions, and cell apoptosis. Methods A 70% IR model was established in C57BL/6J mice with or without SHMT2 knockdown. H&E staining, liver weight/body weight, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels and cell apoptosis were tested to analyze liver damage and function. Then, the related cellular signals were probed. Results The level of SHMT2 protein was significantly increased at 24 h and 48 h after IR (p < 0.001). Mice in the shSHMT2 group showed more necrotic areas and histological damage at 24 h (p < 0.01) after IR and higher levels of serum ALT and AST (p < 0.05) compared with those of mice in the scramble group. After IR for 24 h, the expression of TUNEL in the shSHMT2 group was significantly higher than that in the scramble group, as shown by histological analysis (p < 0.01). Mechanistically, the JNK/P53 signaling pathway was activated by IR, and knockdown of SHMT2 exacerbated hepatocyte apoptosis. Conclusions Knockdown of SHMT2 worsens IR injury through the ROS/JNK/P53 signaling pathway. Our discovery expands the understanding of both molecular and metabolic mechanisms involved in IR. SHMT2 is a possible therapeutic target to improve the prognosis of liver transplantation (LT) and subtotal hepatectomy.
Collapse
|
3
|
Sun Q, He Q, Xu J, Liu Q, Lu Y, Zhang Z, Xu X, Sun B. Guanine nucleotide-binding protein G(i)α2 aggravates hepatic ischemia-reperfusion injury in mice by regulating MLK3 signaling. FASEB J 2019; 33:7049-7060. [PMID: 30840837 DOI: 10.1096/fj.201802462r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is a major challenge in liver resection and transplantation surgeries. Previous studies have revealed that guanine nucleotide-binding protein G(i)α2 (GNAI2) was involved in the progression of myocardial and cerebral I/R injury, but the role and function of GNAI2 in hepatic I/R have not been elucidated. The hepatocyte-specific GNAI2 knockout (GNAI2hep-/-) mice were generated and subjected to hepatic I/R injury. Primary hepatocytes isolated from GNAI2hep-/- and GNAI2flox/flox mice were cultured and challenged to hypoxia-reoxygenation insult. The specific function of GNAI2 in I/R-triggered hepatic injury and the underlying molecular mechanism were explored by various phenotypic analyses and molecular biology methods. In this study, we demonstrated that hepatic GNAI2 expression was significantly increased in liver transplantation patients and wild-type mice after hepatic I/R. Interestingly, hepatocyte-specific GNAI2 deficiency attenuated I/R-induced liver damage, inflammation cytokine expression, macrophage/neutrophil infiltration, and hepatocyte apoptosis in vivo and in vitro. Mechanistically, up-regulation of GNAI2 phosphorylates mixed-lineage protein kinase 3 (MLK3) through direct binding, which exacerbated hepatic I/R damage via MAPK and NF-κB pathway activation. Furthermore, blocking MLK3 signaling reversed GNAI2-mediated hepatic I/R injury. Our study firstly identifies GNAI2 as a promising target for prevention of hepatic I/R-induced injury and related liver diseases.-Sun, Q., He, Q., Xu, J., Liu, Q., Lu, Y., Zhang, Z., Xu, X., Sun, B. Guanine nucleotide-binding protein G(i)α2 aggravates hepatic ischemia-reperfusion injury in mice by regulating MLK3 signaling.
Collapse
Affiliation(s)
- Qikai Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qifeng He
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianbo Xu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qiaoyu Liu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yijun Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zechuan Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Beicheng Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; and
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|