1
|
Novel Soluble Mediators of Innate Immune System Activation in Solid Allograft Rejection. Transplantation 2022; 106:500-509. [PMID: 34049364 DOI: 10.1097/tp.0000000000003834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the past years, solid allograft rejection has been considered the consequence of either cellular- or antibody-mediated reaction both being part of the adaptive immune response, whereas the role of innate immunity has been mostly considered less relevant. Recently, a large body of evidence suggested that the innate immune response and its soluble mediators may play a more important role during solid allograft rejection than originally thought. This review will highlight the role of novel soluble mediators that are involved in the activation of innate immunity during alloimmune response and solid allograft rejection. We will also discuss emerging strategies to alleviate the aforementioned events. Hence, novel, feasible, and safe clinical therapies are needed to prevent allograft loss in solid organ transplantation. Fully understanding the role of soluble mediators of innate immune system activation may help to mitigate solid allograft rejection and improve transplanted recipients' outcomes.
Collapse
|
2
|
Silvis MJM, Kaffka genaamd Dengler SE, Odille CA, Mishra M, van der Kaaij NP, Doevendans PA, Sluijter JPG, de Kleijn DPV, de Jager SCA, Bosch L, van Hout GPJ. Damage-Associated Molecular Patterns in Myocardial Infarction and Heart Transplantation: The Road to Translational Success. Front Immunol 2020; 11:599511. [PMID: 33363540 PMCID: PMC7752942 DOI: 10.3389/fimmu.2020.599511] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
In the setting of myocardial infarction (MI), ischemia reperfusion injury (IRI) occurs due to occlusion (ischemia) and subsequent re-establishment of blood flow (reperfusion) of a coronary artery. A similar phenomenon is observed in heart transplantation (HTx) when, after cold storage, the donor heart is connected to the recipient's circulation. Although reperfusion is essential for the survival of cardiomyocytes, it paradoxically leads to additional myocardial damage in experimental MI and HTx models. Damage (or danger)-associated molecular patterns (DAMPs) are endogenous molecules released after cellular damage or stress such as myocardial IRI. DAMPs activate pattern recognition receptors (PRRs), and set in motion a complex signaling cascade resulting in the release of cytokines and a profound inflammatory reaction. This inflammatory response is thought to function as a double-edged sword. Although it enables removal of cell debris and promotes wound healing, DAMP mediated signalling can also exacerbate the inflammatory state in a disproportional matter, thereby leading to additional tissue damage. Upon MI, this leads to expansion of the infarcted area and deterioration of cardiac function in preclinical models. Eventually this culminates in adverse myocardial remodeling; a process that leads to increased myocardial fibrosis, gradual further loss of cardiomyocytes, left ventricular dilation and heart failure. Upon HTx, DAMPs aggravate ischemic damage, which results in more pronounced reperfusion injury that impacts cardiac function and increases the occurrence of primary graft dysfunction and graft rejection via cytokine release, cardiac edema, enhanced myocardial/endothelial damage and allograft fibrosis. Therapies targeting DAMPs or PRRs have predominantly been investigated in experimental models and are potentially cardioprotective. To date, however, none of these interventions have reached the clinical arena. In this review we summarize the current evidence of involvement of DAMPs and PRRs in the inflammatory response after MI and HTx. Furthermore, we will discuss various current therapeutic approaches targeting this complex interplay and provide possible reasons why clinical translation still fails.
Collapse
Affiliation(s)
- Max J. M. Silvis
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Clémence A. Odille
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mudit Mishra
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels P. van der Kaaij
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Central Military Hospital, Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Saskia C. A. de Jager
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Netherlands
| | - Lena Bosch
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gerardus P. J. van Hout
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
3
|
Cabiati M, Gaggini M, Cesare MM, Caselli C, De Simone P, Filipponi F, Basta G, Gastaldelli A, Del Ry S. Osteopontin in hepatocellular carcinoma: A possible biomarker for diagnosis and follow-up. Cytokine 2017; 99:59-65. [PMID: 28711012 DOI: 10.1016/j.cyto.2017.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/16/2017] [Accepted: 07/06/2017] [Indexed: 02/08/2023]
Abstract
Recently osteopontin (OPN), a protein of the extracellular matrix, has generated in hepatocellular carcinoma (HCC) a significant interest as a prognostic factor. Aim of this study was to confirm, in liver tissues of subjects with HCV-positive HCC undergoing liver transplantation (RL, n=10) and of donors (DL, n=14), the increase of OPN plasma and tissue concentration, the OPN splicing isoforms expression profiling together with those of thrombin, and to evaluate a possible association between OPN measurements. Their association with Notch-1, IV-Collagen-7s domain, IL-6 and TNF-α were also evaluated. Real-Time PCR experiments and immunometric assay were performed. mRNA expression resulted higher in RL than in DL for all analyzed genes and several correlations were found between them. The more relevant association were between OPN-a and OPN-b (p<0.0001), between thrombin and OPN-a (p=0.007), between 7s-collagen and OPN isoforms (p<0.05) and between Notch-1 with OPN-c (p=0.004). Both OPN plasma and liver tissue extract concentrations were assessed confirming the trend observed at the mRNA level. An important association was found between OPN plasma and protein (p<0.0001, r=0.96) even splitting patients in DL (p<0.0001, r=0.93) and RL (p<0.0001, r=0.96). A reduction of OPN plasma levels was found at 6months after transplantation. Considering MELD score as liver disease severity, the mRNA expression of our markers as well as of OPN plasma and tissue concentrations resulted increased as a function of clinical severity. Our results might be considered a useful starting point to validate OPN as a prognostic and diagnostic marker of HCC.
Collapse
Affiliation(s)
| | | | | | | | - Paolo De Simone
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Franco Filipponi
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | | | | | | |
Collapse
|
4
|
Abstract
Although acute liver failure (ALF) is a rare disease, it continues to have high mortality and morbidity rates due to its many causes. High mobility group box 1 (HMGB1), originally reported as a ubiquitous non-histone chromosomal protein, is a multi-functional protein with varying functions depending on its location, such as in the nucleus, cytoplasm and extracellular space. The role of extracellular HMGB1 as an inflammatory mediator has been well studied, and the elevation of serum HMGB1 has been reported in several diseases that are closely associated with ALF. Areas covered: In this review, we focus on the relationship between causes of acute liver failure, such as viral infection, drug-induced liver injury, ischemia/reperfusion injury, and acute-on-chronic liver failure, and the role of HMGB1. Furthermore, we also consolidate and summarize the current reports of HMGB1-targeting therapies in hepatic injury models. Expert commentary: HMGB1 could be a novel therapeutic candidate for ALF, and the clinical testing of HMGB1-targeting therapies for ALF patients is expected.
Collapse
Affiliation(s)
- Tetsu Yamamoto
- a Department of Digestive and General Surgery , Shimane University Faculty of Medicine , Izumo , Japan
| | - Yoshitsugu Tajima
- a Department of Digestive and General Surgery , Shimane University Faculty of Medicine , Izumo , Japan
| |
Collapse
|
5
|
Xia P, Deng Q, Gao J, Yu X, Zhang Y, Li J, Guan W, Hu J, Tan Q, Zhou L, Han W, Yuan Y, Yu Y. Therapeutic effects of antigen affinity-purified polyclonal anti-receptor of advanced glycation end-product (RAGE) antibodies on cholestasis-induced liver injury in rats. Eur J Pharmacol 2016; 779:102-10. [PMID: 26970185 DOI: 10.1016/j.ejphar.2016.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/22/2023]
Abstract
Cholestasis leads to acute hepatic injury, fibrosis/cirrhosis, inflammation, and duct proliferation. We investigated whether blocking receptor of advanced glycation end-products (RAGE) with polyclonal anti-RAGE antibodies (anti-RAGE) could regulate acute liver injury and fibrosis in a rat bile duct ligation (BDL) model. Male Wister rats received 0.5mg/kg rabbit anti-RAGE or an equal amount of rabbit IgG by subcutaneous injection twice a week after BDL. Samples of liver tissue and peripheral blood were collected at 14 days after BDL. Serum biochemistry and histology were used to analyze the degree of liver injury. Quantitative real-time PCR (qPCR) and immunohistochemical staining were used to further analyze liver injury. Anti-RAGE improved the gross appearance of the liver and the rat survival rate. Liver tissue histology and relevant serum biochemistry indicated that anti-RAGE attenuated liver necrosis, inflammation, liver fibrosis, and duct proliferation in the BDL model. qPCR and western blotting showed significant reductions in interleukin-1β expression levels in the liver by treatment with anti-RAGE. Anti-RAGE also significantly reduced the mRNA levels of α1(1) collagen (Col1α1) and cholesterol 7α-hydroxylase, and the ratio of tissue inhibitor of matrix metalloproteinase-1 to matrix metalloproteinases (MMPs) in the liver. In addition, anti-RAGE regulated the transcriptional level of Col1α1 and MMP-9 in transforming growth factor-β-induced activated LX-2 cells in vitro. Anti-RAGE was found to inhibit hepatic stellate cell proliferation in vivo and in vitro. Therefore, anti-RAGE can protect the liver from injury induced by BDL in rats.
Collapse
Affiliation(s)
- Peng Xia
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Qing Deng
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Jin Gao
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Xiaolan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Yang Zhang
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Jingjing Li
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Wen Guan
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Jianjun Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd., Xuhui, Shanghai 200233, China
| | - Quanhui Tan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Rd., Xuhui, Shanghai 200233, China
| | - Liang Zhou
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Wei Han
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China
| | - Yunsheng Yuan
- Laboratory of Regenerative Medicine, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China; Engineering Research Center of Cell and Therapeutic Antibody, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| |
Collapse
|
6
|
Basta G, Turco SD, Navarra T, Lee WM. Circulating levels of soluble receptor for advanced glycation end products and ligands of the receptor for advanced glycation end products in patients with acute liver failure. Liver Transpl 2015; 21:847-54. [PMID: 25825217 PMCID: PMC4933521 DOI: 10.1002/lt.24129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 12/24/2022]
Abstract
Animal studies suggest that receptor for advanced glycation end products (RAGE)-dependent mechanisms contribute to acetaminophen-induced liver damage. We examined whether circulating levels of soluble receptor for advanced glycation end products (sRAGE) or RAGE ligands, including extracellular newly identified receptor for advanced glycation end products binding protein (EN-RAGE), high-mobility group box 1 (HMGB1), and Nε-(Carboxymethyl)lysine adducts (CML), could aid in prognostication after an acetaminophen overdose. Sixty well-characterized acetaminophen-related acute liver failure (ALF) patients (30 spontaneous survivors and 30 patients who underwent transplantation and/or died) who were enrolled in the National Institutes of Health-sponsored Acute Liver Failure Study Group, were matched by age, met standard criteria for encephalopathy, and had an international normalized ratio > 1.5 were retrospectively studied. HMGB1, EN-RAGE, CML, and sRAGE were detected by enzyme-linked immunosorbent assay methods in sera from ALF patients and 30 healthy controls. Levels of sRAGE, EN-RAGE, and HMGB1 (but not CML) were significantly greater (P < 0.001) in ALF patients versus normal controls. The levels of sRAGE, HMGB1, and EN-RAGE were significantly higher (P = 0.03, P < 0.01, and P = 0.03) in patients with a systemic inflammatory response syndrome (SIRS) score > 2 versus patients with a SIRS score ≤ 2. Nevertheless, only sRAGE levels were significantly higher in patients who underwent transplantation and/or died versus spontaneous survivors (P < 0.001), and they were positively associated with conventional markers of liver disease severity. Multivariate logistic regression identified an encephalopathy grade > 2 as an independent predictor of an adverse outcome on admission (odds ratio, 13; 95% confidence interval, 2.3-73; P < 0.001). The RAGE-ligand axis may interfere with liver regeneration and should be a promising objective for further research.
Collapse
Affiliation(s)
| | | | | | - William M Lee
- Division of Digestive and Liver Diseases, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | |
Collapse
|