1
|
Yigider E, Taspinar MS, Agar G. Advances in bread wheat production through CRISPR/Cas9 technology: a comprehensive review of quality and other aspects. PLANTA 2023; 258:55. [PMID: 37522927 DOI: 10.1007/s00425-023-04199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
MAIN CONCLUSION This review provides a comprehensive overview of the CRISPR/Cas9 technique and the research areas of this gene editing tool in improving wheat quality. Wheat (Triticum aestivum L.), the basic nutrition for most of the human population, contributes 20% of the daily energy needed because of its, carbohydrate, essential amino acids, minerals, protein, and vitamin content. Wheat varieties that produce high yields and have enhanced nutritional quality will be required to fulfill future demands. Hexaploid wheat has A, B, and D genomes and includes three like but not identical copies of genes that influence important yield and quality. CRISPR/Cas9, which allows multiplex genome editing provides major opportunities in genome editing studies of plants, especially complicated genomes such as wheat. In this overview, we discuss the CRISPR/Cas9 technique, which is credited with bringing about a paradigm shift in genome editing studies. We also provide a summary of recent research utilizing CRISPR/Cas9 to investigate yield, quality, resistance to biotic/abiotic stress, and hybrid seed production. In addition, we provide a synopsis of the laboratory experience-based solution alternatives as well as the potential obstacles for wheat CRISPR studies. Although wheat's extensive genome and complicated polyploid structure previously slowed wheat genetic engineering and breeding progress, effective CRISPR/Cas9 systems are now successfully used to boost wheat development.
Collapse
Affiliation(s)
- Esma Yigider
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, 25240, Erzurum, Turkey.
| | - Guleray Agar
- Faculty of Science, Department of Biology, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
2
|
Wang K, Shi L, Liang X, Zhao P, Wang W, Liu J, Chang Y, Hiei Y, Yanagihara C, Du L, Ishida Y, Ye X. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. NATURE PLANTS 2022; 8:110-117. [PMID: 35027699 DOI: 10.1038/s41477-021-01085-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/01/2021] [Indexed: 05/12/2023]
Abstract
Although great progress has been achieved regarding wheat genetic transformation technology in the past decade1-3, genotype dependency, the most impactful factor in wheat genetic transformation, currently limits the capacity for wheat improvement by transgenic integration and genome-editing approaches. The application of regeneration-related genes during in vitro culture could potentially contribute to enhancement of plant transformation efficiency4-11. In the present study, we found that overexpression of the wheat gene TaWOX5 from the WUSCHEL family dramatically increases transformation efficiency with less genotype dependency than other methods. The expression of TaWOX5 in wheat calli prohibited neither shoot differentiation nor root development. Moreover, successfully transformed transgenic wheat plants can clearly be recognized based on a visible botanic phenotype, relatively wider flag leaves. Application of TaWOX5 improved wheat immature embryo transformation and regeneration. The use of TaWOX5 in improvement of transformation efficiency also showed promising results in Triticum monococcum, triticale, rye, barley and maize.
Collapse
Affiliation(s)
- Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.
| | - Lei Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaona Liang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Pei Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wanxin Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Junxian Liu
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Yanan Chang
- College of Life Science, Capital Normal University, Beijing, P. R. China
| | - Yukoh Hiei
- Plant Innovation Center, Japan Tobacco Inc., Iwata, Japan
| | | | - Lipu Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yuji Ishida
- Plant Innovation Center, Japan Tobacco Inc., Iwata, Japan.
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.
| |
Collapse
|
3
|
Li F, Li X, Qiao M, Li B, Guo D, Zhang X, Min D. TaTCP-1, a Novel Regeneration-Related Gene Involved in the Molecular Regulation of Somatic Embryogenesis in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2020; 11:1004. [PMID: 32983186 PMCID: PMC7492748 DOI: 10.3389/fpls.2020.01004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The lower regeneration rate of wheat calli is the main factor restricting the development of transgenic wheat plants. Therefore, improving the regeneration rate of wheat callus is a precondition for developing genetic engineering-based wheat breeding approaches. In the present study, we explored the molecular mechanism of wheat regeneration and aimed to establish an efficient system for transgenic wheat. We isolated and identified a regeneration-related gene, TaTCP-1 (KC808517), from wheat cultivar Lunxuan 987. Sequence analysis revealed that the ORF of TaTCP-1 was 1623bp long encoding 540 amino acids. The TaTCP-1 gene was expressed in various wheat tissues. Further, the level of TaTCP-1 expression was higher in calli and increased gradually with increasing callus induction time, reaching a peak on the 11th day after induction. Moreover, the expression level of TaTCP-1 was higher in embryogenic calli than in non-embryonic calli. The TaTCP-1 protein was localized to the nucleus, cytoplasm, and cell membrane. The callus regeneration rate of wheat plants transformed with TaTCP-1-RNAi reduced by 85.09%. In contrast, it increased by 14.43% in plants overexpressing TaTCP-1. In conclusion, our results showed that TaTCP-1 played a vital role in promoting wheat regeneration, and regulated the somatic embryogenesis of wheat. These results may have implications in the genetic engineering of wheat for improved wheat production.
Collapse
Affiliation(s)
- Feifei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaoyan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Meng Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Bo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Dongwei Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Donghong Min
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Zhao B, Wu TT, Ma SS, Jiang DJ, Bie XM, Sui N, Zhang XS, Wang F. TaD27-B gene controls the tiller number in hexaploid wheat. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:513-525. [PMID: 31350929 PMCID: PMC6953239 DOI: 10.1111/pbi.13220] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/13/2019] [Accepted: 07/24/2019] [Indexed: 05/05/2023]
Abstract
Tillering is a significant agronomic trait in wheat which shapes plant architecture and yield. Strigolactones (SLs) function in inhibiting axillary bud outgrowth. The roles of SLs in the regulation of bud outgrowth have been described in model plant species, including rice and Arabidopsis. However, the role of SLs genes in wheat remains elusive due to the size and complexity of the wheat genomes. In this study, TaD27 genes in wheat, orthologs of rice D27 encoding an enzyme involved in SLs biosynthesis, were identified. TaD27-RNAi wheat plants had more tillers, and TaD27-B-OE wheat plants had fewer tillers. Germination bioassay of Orobanche confirmed the SLs was deficient in TaD27-RNAi and excessive in TaD27-B-OE wheat plants. Moreover, application of exogenous GR24 or TIS108 could mediate the axillary bud outgrowth of TaD27-RNAi and TaD27-B-OE in the hydroponic culture, suggesting that TaD27-B plays critical roles in regulating wheat tiller number by participating in SLs biosynthesis. Unlike rice D27, plant height was not affected in the transgenic wheat plants. Transcription and gene coexpression network analysis showed that a number of genes are involved in the SLs signalling pathway and axillary bud development. Our results indicate that TaD27-B is a key factor in the regulation of tiller number in wheat.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Ting Ting Wu
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Shan Shan Ma
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Deng Ji Jiang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Xiao Min Bie
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant StressCollege of Life ScienceShandong Normal UniversityJinanChina
| | - Xian Sheng Zhang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| | - Fang Wang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandongChina
| |
Collapse
|
5
|
Kumar R, Mamrutha HM, Kaur A, Venkatesh K, Sharma D, Singh GP. Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Mol Biol Rep 2019; 46:1845-1853. [DOI: 10.1007/s11033-019-04637-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/22/2019] [Indexed: 11/28/2022]
|
6
|
Wheat genome editing expedited by efficient transformation techniques: Progress and perspectives. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Zhao P, Wang K, Lin Z, Zhang W, Du L, Zhang Y, Ye X. Cloning and characterization of TaVIP2 gene from Triticum aestivum and functional analysis in Nicotiana tabacum. Sci Rep 2016; 6:37602. [PMID: 27857194 PMCID: PMC5114603 DOI: 10.1038/srep37602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/01/2016] [Indexed: 11/23/2022] Open
Abstract
Wheat is recalcitrant to genetic transformation. A potential solution is to manipulate the expression of some host proteins involved in T-DNA integration process. VirE2 interacting protein 2 (VIP2) plays an important role in T-DNA transport and integration. In this study, a TaVIP2 gene was cloned from common wheat. Southern blot and allele-specific polymerase chain reaction (AS-PCR) combined with an online chromosomal location software tool revealed that three TaVIP2 genes were located on wheat chromosomes 1AL, 1BL, and 1DL. These three homoeoallelic TaVIP2 genes all contained 13 exons and 12 introns, and their coding sequences were the same; there were a few single nucleotide polymorphisms (SNPs) among the three genes. The heterologous expression of the TaVIP2 gene in tobacco led to enhancement of the Agrobacterium-mediated transformation efficiency up to 2.5-fold. Transgenic tobacco plants expressing TaVIP2 showed enhanced resistance to powdery mildew. Further quantitative real-time PCR (qRT-PCR) revealed that overexpression of TaVIP2 in transgenic tobacco up-regulated the expression of an endogenous gene, NtPR-1, which likely contributed to powdery mildew resistance in transgenic tobacco. Our study indicates that the TaVIP2 gene may be highly useful in efforts to improve Agrobacterium-mediated transformation efficiency and to enhance powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Pei Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Zhishan Lin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Wei Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Lipu Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Yunlong Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
8
|
Comprehensive Identification and Bread-Making Quality Evaluation of Common Wheat Somatic Variation Line AS208 on Glutenin Composition. PLoS One 2016; 11:e0146933. [PMID: 26765256 PMCID: PMC4713059 DOI: 10.1371/journal.pone.0146933] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/24/2015] [Indexed: 12/04/2022] Open
Abstract
High molecular weight glutenin subunits (HMW-GSs) are important seed storage proteins in wheat (Triticum aestivum) that determine wheat dough elasticity and processing quality. Clarification of the defined effectiveness of HMW-GSs is very important to breeding efforts aimed at improving wheat quality. To date, there have no report on the expression silencing and quality effects of 1Bx20 and 1By20 at the Glu-B1 locus in wheat. A wheat somatic variation line, AS208, in which both 1Bx20 and 1By20 at Glu-B1 locus were silenced, was developed recently in our laboratory. Evaluation of agronomic traits and seed storage proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and reversed-phase high performance liquid chromatography (RP-HPLC) indicated that AS208 was highly similar to its parental cultivar Lunxuan987 (LX987), with the exception that the composition and expression of HMW-GSs was altered. The 1Bx20 and 1By20 in AS208 were further identified to be missing by polymerase chain reaction (PCR) and quantitative real-time RT-PCR (qRT-PCR) assays. Based on the PCR results for HMW-GS genes and their promoters in AS208 compared with LX987, 1Bx20 and 1By20 were speculated to be deleted in AS208 during in vitro culture. Quality analysis of this line with Mixograph, Farinograph, and Extensograph instruments, as well as analysis of bread-making quality traits, demonstrated that the lack of the genes encoding 1Bx20 and 1By20 caused various negative effects on dough processing and bread-making quality traits, including falling number, dough stability time, mixing tolerance index, crude protein values, wet gluten content, bread size, and internal cell structure. AS208 can potentially be used in the functional dissection of other HMW-GSs as a plant material with desirable genetic background, and in biscuit making industry as a high-quality weak gluten wheat source.
Collapse
|
9
|
Chu Z, Chen J, Xu H, Dong Z, Chen F, Cui D. Identification and Comparative Analysis of microRNA in Wheat (Triticum aestivum L.) Callus Derived from Mature and Immature Embryos during In vitro Culture. FRONTIERS IN PLANT SCIENCE 2016; 7:1302. [PMID: 27625667 PMCID: PMC5003897 DOI: 10.3389/fpls.2016.01302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/15/2016] [Indexed: 05/02/2023]
Abstract
Feasible and efficient tissue culture plays an important role in plant genetic engineering. Wheat (Triticum aestivum L.) immature embryos (IMEs) are preferred for tissue culture to mature embryos (MEs) because IMEs easily generate embryogenic callus, producing large number of plants. The molecular mechanisms of regulation and the biological pathways involved in embryogenic callus formation in wheat remain unclear. Here, microRNAs (miRNAs) potentially involved in embryogenic callus formation and somatic embryogenesis were identified through deep sequencing of small RNAs (sRNAs) and analyzed with bioinformatics tools. Six sRNA libraries derived from calli of IMEs and MEs after 3, 6, or 15 d of culture (DC) were constructed and sequenced. A total of 85 known miRNAs were identified, of which 30, 33, and 18 were differentially expressed (P < 0.05) between the IME and ME libraries at 3, 6, and 15 DC, respectively. Additionally, 171 novel and 41 candidate miRNAs were also identified, of the novel miRNA, 69, 67, and 37 were differentially expressed (P < 0.05) between the two types of libraries at 3, 6, and 15 DC, respectively. The expression patterns of eight known and eight novel miRNAs were validated using quantitative real-time polymerase chain reaction. Gene ontology annotation of differentially expressed miRNA targets provided information regarding the underlying molecular functions, biological processes, and cellular components involved in embryogenic callus development. Functional miRNAs, such as miR156, miR164, miR1432, miR398, and miR397, differentially expressed in IMEs and MEs might be related to embryogenic callus formation and somatic embryogenesis. This study suggests that miRNA plays an important role in embryogenic callus formation and somatic embryogenesis in wheat, and our data provide a useful resource for further research.
Collapse
|
10
|
|
11
|
Efficient regeneration potential is closely related to auxin exposure time and catalase metabolism during the somatic embryogenesis of immature embryos in Triticum aestivum L. Mol Biotechnol 2013; 54:451-60. [PMID: 22815184 DOI: 10.1007/s12033-012-9583-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Regeneration of cultured tissue is a prerequisite of Agrobacterium- and biolistic-mediated plant transformation. In this study, an efficient protocol for improving wheat (Triticum aestivum L.) immature embryo regeneration was developed. Based on the statistical analysis of embryogenic callus induction efficiency, green spot differentiation efficiency, and plant regeneration efficiency from five wheat accessions, improved culture conditions were found to be more effective for embryogenic callus production than the traditional conditions. Using semi-quantitative reverse transcription polymerase chain reaction, a candidate gene, designated as TaCAT1, which encodes a catalase was identified to have a significant correlation with high-regeneration trait of wheat immature embryos. Three amino acid substitutions were found in TaCAT1 protein between high- and low-regeneration wheat accessions. Hydrogen peroxide content in the cultured calli increased from day 5 to 15, and then decreased sharply on day 20, followed by a second peak on day 25 during regeneration stage. Furthermore, a 3,500-bp 5' flanking region upstream of the first codon ATG of TaCAT1 was isolated using inverse polymerase chain reaction. In silico, analysis revealed that the TaCAT1 promoter contained two regulatory motifs associated with responses to auxin.
Collapse
|