1
|
Wright GM, Cui F. The nucleosome position-encoding WW/SS sequence pattern is depleted in mammalian genes relative to other eukaryotes. Nucleic Acids Res 2019; 47:7942-7954. [PMID: 31216031 PMCID: PMC6735720 DOI: 10.1093/nar/gkz544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022] Open
Abstract
Nucleosomal DNA sequences generally follow a well-known pattern with ∼10-bp periodic WW (where W is A or T) dinucleotides that oscillate in phase with each other and out of phase with SS (where S is G or C) dinucleotides. However, nucleosomes with other DNA patterns have not been systematically analyzed. Here, we focus on an opposite pattern, namely anti-WW/SS pattern, in which WW dinucleotides preferentially occur at DNA sites that bend into major grooves and SS (where S is G or C) dinucleotides are often found at sites that bend into minor grooves. Nucleosomes with the anti-WW/SS pattern are widespread and exhibit a species- and context-specific distribution in eukaryotic genomes. Unlike non-mammals (yeast, nematode and fly), there is a positive correlation between the enrichment of anti-WW/SS nucleosomes and RNA Pol II transcriptional levels in mammals (mouse and human). Interestingly, such enrichment is not due to underlying DNA sequence. In addition, chromatin remodeling complexes have an impact on the abundance but not on the distribution of anti-WW/SS nucleosomes in yeast. Our data reveal distinct roles of cis- and trans-acting factors in the rotational positioning of nucleosomes between non-mammals and mammals. Implications of the anti-WW/SS sequence pattern for RNA Pol II transcription are discussed.
Collapse
Affiliation(s)
- Gregory M Wright
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623, USA
| |
Collapse
|
2
|
Fuertes MA, Rodrigo JR, Alonso C. Conserved Critical Evolutionary Gene Structures in Orthologs. J Mol Evol 2019; 87:93-105. [PMID: 30815710 DOI: 10.1007/s00239-019-09889-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
Abstract
Unravelling gene structure requires the identification and understanding of the constraints that are often associated with the evolutionary history and functional domains of genes. We speculated in this manuscript with the possibility of the existence in orthologs of an emergent highly conserved gene structure that might explain their coordinated evolution during speciation events and their parental function. Here, we will address the following issues: (1) is there any conserved hypothetical structure along ortholog gene sequences? (2) If any, are such conserved structures maintained and conserved during speciation events? The data presented show evidences supporting this hypothesis. We have found that, (1) most orthologs studied share highly conserved compositional structures not observed previously. (2) While the percent identity of nucleotide sequences of orthologs correlates with the percent identity of composon sequences, the number of emergent compositional structures conserved during speciation does not correlate with the percent identity. (3) A broad range of species conserves the emergent compositional stretches. We will also discuss the concept of critical gene structure.
Collapse
Affiliation(s)
- Miguel A Fuertes
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049, Madrid, Spain.
| | | | - Carlos Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
3
|
Martinez J, Zagrovic B. A code within a code: how codons influence
mRNA
stability. EMBO J 2016; 35:2064-2065. [DOI: 10.15252/embj.201695283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Javier Martinez
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences Vienna Austria
- Max F. Perutz Laboratories (MFPL) Department of Medical Biochemistry Medical University of Vienna Vienna Austria
| | - Bojan Zagrovic
- Max F. Perutz Laboratories (MFPL) Department of Structural and Computational Biology University of Vienna Vienna Austria
| |
Collapse
|
4
|
Raabe CA, Brosius J. Does every transcript originate from a gene? Ann N Y Acad Sci 2015; 1341:136-48. [PMID: 25847549 DOI: 10.1111/nyas.12741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 12/20/2022]
Abstract
Outdated gene definitions favored regions corresponding to mature messenger RNAs, in particular, the open reading frame. In eukaryotes, the intergenic space was widely regarded nonfunctional and devoid of RNA transcription. Original concepts were based on the assumption that RNA expression was restricted to known protein-coding genes and a few so-called structural RNA genes, such as ribosomal RNAs or transfer RNAs. With the discovery of introns and, more recently, sensitive techniques for monitoring genome-wide transcription, this view had to be substantially modified. Tiling microarrays and RNA deep sequencing revealed myriads of transcripts, which cover almost entire genomes. The tremendous complexity of non-protein-coding RNA transcription has to be integrated into novel gene definitions. Despite an ever-growing list of functional RNAs, questions concerning the mass of identified transcripts are under dispute. Here, we examined genome-wide transcription from various angles, including evolutionary considerations, and suggest, in analogy to novel alternative splice variants that do not persist, that the vast majority of transcripts represent raw material for potential, albeit rare, exaptation events.
Collapse
Affiliation(s)
- Carsten A Raabe
- Institute of Experimental Pathology, ZMBE, University of Münster, Münster, Germany
| | | |
Collapse
|
5
|
Minakhina S, Changela N, Steward R. Zfrp8/PDCD2 is required in ovarian stem cells and interacts with the piRNA pathway machinery. Development 2014; 141:259-68. [PMID: 24381196 DOI: 10.1242/dev.101410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The maintenance of stem cells is central to generating diverse cell populations in many tissues throughout the life of an animal. Elucidating the mechanisms involved in how stem cells are formed and maintained is crucial to understanding both normal developmental processes and the growth of many cancers. Previously, we showed that Zfrp8/PDCD2 is essential for the maintenance of Drosophila hematopoietic stem cells. Here, we show that Zfrp8/PDCD2 is also required in both germline and follicle stem cells in the Drosophila ovary. Expression of human PDCD2 fully rescues the Zfrp8 phenotype, underlining the functional conservation of Zfrp8/PDCD2. The piRNA pathway is essential in early oogenesis, and we find that nuclear localization of Zfrp8 in germline stem cells and their offspring is regulated by some piRNA pathway genes. We also show that Zfrp8 forms a complex with the piRNA pathway protein Maelstrom and controls the accumulation of Maelstrom in the nuage. Furthermore, Zfrp8 regulates the activity of specific transposable elements also controlled by Maelstrom and Piwi. Our results suggest that Zfrp8/PDCD2 is not an integral member of the piRNA pathway, but has an overlapping function, possibly competing with Maelstrom and Piwi.
Collapse
Affiliation(s)
- Svetlana Minakhina
- Rutgers University, Department of Molecular Biology, Waksman Institute, Cancer Institute of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
6
|
Balakirev ES, Chechetkin VR, Lobzin VV, Ayala FJ. Computational methods of identification of pseudogenes based on functionality: entropy and GC content. Methods Mol Biol 2014; 1167:41-62. [PMID: 24823770 DOI: 10.1007/978-1-4939-0835-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Spectral entropy and GC content analyses reveal comprehensive structural features of DNA sequences. To illustrate the significance of these features, we analyze the β-esterase gene cluster, including the Est-6 gene and the ψEst-6 putative pseudogene, in seven species of the Drosophila melanogaster subgroup. The spectral entropies show distinctly lower structural ordering for ψEst-6 than for Est-6 in all species studied. However, entropy accumulation is not a completely random process for either gene and it shows to be nucleotide dependent. Furthermore, GC content in synonymous positions is uniformly higher in Est-6 than in ψEst-6, in agreement with the reduced GC content generally observed in pseudogenes and nonfunctional sequences. The observed differences in entropy and GC content reflect an evolutionary shift associated with the process of pseudogenization and subsequent functional divergence of ψEst-6 and Est-6 after the duplication event. The data obtained show the relevance and significance of entropy and GC content analyses for pseudogene identification and for the comparative study of gene-pseudogene evolution.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA,
| | | | | | | |
Collapse
|
7
|
Merkulova TI, Ananko EA, Ignatieva EV, Kolchanov NA. Transcription regulatory codes of eukaryotic genomes. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413010079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Kumari S, Swaminathan A, Chatterjee S, Senapati P, Boopathi R, Kundu TK. Chromatin organization, epigenetics and differentiation: an evolutionary perspective. Subcell Biochem 2013; 61:3-35. [PMID: 23150244 DOI: 10.1007/978-94-007-4525-4_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genome packaging is a universal phenomenon from prokaryotes to higher mammals. Genomic constituents and forces have however, travelled a long evolutionary route. Both DNA and protein elements constitute the genome and also aid in its dynamicity. With the evolution of organisms, these have experienced several structural and functional changes. These evolutionary changes were made to meet the challenging scenario of evolving organisms. This review discusses in detail the evolutionary perspective and functionality gain in the phenomena of genome organization and epigenetics.
Collapse
Affiliation(s)
- Sujata Kumari
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Post, Bangalore, 560064, India
| | | | | | | | | | | |
Collapse
|
9
|
Trifonov EN, Volkovich Z, Frenkel ZM. Multiple levels of meaning in DNA sequences, and one more. Ann N Y Acad Sci 2012; 1267:35-8. [PMID: 22954214 DOI: 10.1111/j.1749-6632.2012.06589.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
If we define a genetic code as a widespread DNA sequence pattern that carries a message with an impact on biology, then there are multiple genetic codes. Sequences involved in these codes overlap and, thus, both interact with and constrain each other, such as for the triplet code, the intron-splicing code, the code for amphipathic alpha helices, and the chromatin code. Nucleosomes preferentially are located at the ends of exons, thus protecting splice junctions, with the N9 positions of guanines of the GT and AG junctions oriented toward the histones. Analysis of protein-coding sequences reveals numerous traces of tandem repeats, apparently formed by triplet expansion, which in effect is a genome inflation ``code''. Our data are consistent with the hypothesis that expansion of simple tandem repetition of certain aggressive triplets has been a characteristic of life from its emergence. Such expanding triplets appear to be the major factor underlying observed codon usage biases.
Collapse
Affiliation(s)
- Edward N Trifonov
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel.
| | | | | |
Collapse
|
10
|
A generalized hidden Markov model for determining sequence-based predictors of nucleosome positioning. Stat Appl Genet Mol Biol 2012; 11:/j/sagmb.2012.11.issue-2/1544-6115.1707/1544-6115.1707.xml. [PMID: 22499697 DOI: 10.2202/1544-6115.1707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chromatin structure, in terms of positioning of nucleosomes and nucleosome-free regions in the DNA, has been found to have an immense impact on various cell functions and processes, ranging from transcriptional regulation to growth and development. In spite of numerous experimental and computational approaches being developed in the past few years to determine the intrinsic relationship between chromatin structure (nucleosome positioning) and DNA sequence features, there is yet no universally accurate approach to predict nucleosome positioning from the underlying DNA sequence alone. We here propose an alternative approach to predicting nucleosome positioning from sequence, making use of characteristic sequence differences, and inherent dependencies in overlapping sequence features. Our nucleosomal positioning prediction algorithm, based on the idea of generalized hierarchical hidden Markov models (HGHMMs), was used to predict nucleosomal state based on the DNA sequence in yeast chromosome III, and compared with two other existing methods. The HGHMM method performed favorably among the three models in terms of specificity and sensitivity, and provided estimates that were largely consistent with predictions from the method of Yuan and Liu (2008). However, all the methods still give higher than desirable misclassification rates, indicating that sequence-based features may provide only limited information towards understanding positioning of nucleosomes. The method is implemented in the open-source statistical software R, and is freely available from the authors' website.
Collapse
|