1
|
Development and identification of four new synthetic hexaploid wheat lines with solid stems. Sci Rep 2022; 12:4898. [PMID: 35318389 PMCID: PMC8941074 DOI: 10.1038/s41598-022-08866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Stem solidness is an important agronomic trait for increasing the ability of wheat to resist lodging. In this study, four new synthetic hexaploid wheat with solid stems were developed from natural chromosome doubling of F1 hybrids between a solid-stemmed durum wheat (Triticum turgidum ssp. durum, 2n = 4x = 28, AABB) and four Aegilops tauschii (2n = 2x = 14, DD) accessions. The solid expression of the second internode at the base of the stem was stable for two synthetic hexalpoid wheat Syn-SAU-117 and Syn-SAU-119 grown in both the greenhouse and field. The lodging resistance of four synthetic solid-stem wheats is stronger than that of CS, and Syn-SAU-116 has the strongest lodging resistance, followed by Syn-SAU-119. The paraffin sections of the second internode showed that four synthetic wheat lines had large outer diameters, well-developed mechanical tissues, large number of vascular bundles, and similar anatomical characteristics with solid-stemmed durum wheat. The chromosomal composition of four synthetic hexaploid wheat was identified by FISH (fluorescence in situ hybridization) using Oligo-pSc119.2-1 and Oligo-pTa535-1. At adult stage, all four synthetic hexaploid wheat showed high resistance to mixed physiological races of stripe rust pathogen (CYR31, CYR32, CYR33, CYR34). These synthetic hexaploid wheat lines provide new materials for the improvement of common wheat.
Collapse
|
2
|
Mino M, Tezuka T, Shomura S. The hybrid lethality of interspecific F 1 hybrids of Nicotiana: a clue to understanding hybrid inviability-a major obstacle to wide hybridization and introgression breeding of plants. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:10. [PMID: 37309322 PMCID: PMC10248639 DOI: 10.1007/s11032-022-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Reproductive isolation poses a major obstacle to wide hybridization and introgression breeding of plants. Hybrid inviability in the postzygotic isolation barrier inevitably reduces hybrid fitness, consequently causing hindrances in the establishment of novel genotypes from the hybrids among genetically divergent parents. The idea that the plant immune system is involved in the hybrid problem is applicable to the intra- and/or interspecific hybrids of many different taxa. The lethality characteristics and expression profile of genes associated with the hypersensitive response of the hybrids, along with the suppression of causative genes, support the deleterious epistatic interaction of parental NB-LRR protein genes, resulting in aberrant hyper-immunity reactions in the hybrid. Moreover, the cellular, physiological, and biochemical reactions observed in hybrid cells also corroborate this hypothesis. However, the difference in genetic backgrounds of the respective hybrids may contribute to variations in lethality phenotypes among the parental species combinations. The mixed state in parental components of the chaperone complex (HSP90-SGT1-RAR1) in the hybrid may also affect the hybrid inviability. This review article discusses the facts and hypothesis regarding hybrid inviability, alongside the findings of studies on the hybrid lethality of interspecific hybrids of the genus Nicotiana. A possible solution for averting the hybrid problem has also been scrutinized with the aim of improving the wide hybridization and introgression breeding program in plants.
Collapse
Affiliation(s)
- Masanobu Mino
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Takahiro Tezuka
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Sachiko Shomura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| |
Collapse
|
3
|
Oleszczuk S, Grzechnik N, Mason AS, Zimny J. Heritability of meiotic restitution and fertility restoration in haploid triticale. PLANT CELL REPORTS 2019; 38:1515-1525. [PMID: 31473791 PMCID: PMC6825030 DOI: 10.1007/s00299-019-02462-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/19/2019] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE A single division meiosis mechanism of meiotic restitution is incompletely penetrant but significantly associated with restored fertility in triticale haploids (n = 21, genome formula ABR). Meiotic restitution, or failure of meiosis to produce gametes with a reduced chromosome number, can lead to the restoration of fertility in allohaploids. Meiotic restitution is of major interest for producing doubled haploids, as haploid plants undergoing meiotic restitution can often form seeds without the need to apply mitosis inhibitors to double chromosome number. We aimed to characterize meiotic restitution in a population of 183 haploids (n = 21, genome formula ABR) derived from an F1 wheat-rye hybrid where one parent was known to carry factors responsible for restoration of fertility in wide-cross haploids. Based on cytological analysis, approximately half of the plants analyzed were characterized by normal meiosis, while half showed at least some cytological evidence of meiotic restitution. However, this mechanism was incompletely penetrant in the population, with no individual plant showing 100% unreduced gamete formation: restitution occurred sectorially within each anther and was not observed in all the anthers of a given plant. Hence, the absence of meiotic restitution could not be confirmed conclusively for any individual plant, confounding this analysis. However, cytological observation of meiotic restitution was significantly associated with seed set, further confirming the role of meiotic restitution in fertility restoration. Our results provide insight into this mechanism of unreduced gamete formation, and provide a basis for future work identifying the genetic factors responsible for this trait.
Collapse
Affiliation(s)
- Sylwia Oleszczuk
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, 05-870, Blonie, Poland.
| | - Natalia Grzechnik
- Department of Robotics and Mechatronics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Research Center for Biosystems, Land Use and Nutrition (IFZ), Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Janusz Zimny
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzikow, 05-870, Blonie, Poland
| |
Collapse
|
4
|
|
5
|
Mirzaghaderi G, Hörandl E. The evolution of meiotic sex and its alternatives. Proc Biol Sci 2016; 283:20161221. [PMID: 27605505 PMCID: PMC5031655 DOI: 10.1098/rspb.2016.1221] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
Meiosis is an ancestral, highly conserved process in eukaryotic life cycles, and for all eukaryotes the shared component of sexual reproduction. The benefits and functions of meiosis, however, are still under discussion, especially considering the costs of meiotic sex. To get a novel view on this old problem, we filter out the most conserved elements of meiosis itself by reviewing the various modifications and alterations of modes of reproduction. Our rationale is that the indispensable steps of meiosis for viability of offspring would be maintained by strong selection, while dispensable steps would be variable. We review evolutionary origin and processes in normal meiosis, restitutional meiosis, polyploidization and the alterations of meiosis in forms of uniparental reproduction (apomixis, apomictic parthenogenesis, automixis, selfing) with a focus on plants and animals. This overview suggests that homologue pairing, double-strand break formation and homologous recombinational repair at prophase I are the least dispensable elements, and they are more likely optimized for repair of oxidative DNA damage rather than for recombination. Segregation, ploidy reduction and also a biparental genome contribution can be skipped for many generations. The evidence supports the theory that the primary function of meiosis is DNA restoration rather than recombination.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Zeng D, Luo J, Li Z, Chen G, Zhang L, Ning S, Yuan Z, Zheng Y, Hao M, Liu D. High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines. PLoS One 2016; 11:e0162847. [PMID: 27611704 PMCID: PMC5017740 DOI: 10.1371/journal.pone.0162847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/29/2016] [Indexed: 11/24/2022] Open
Abstract
Bread wheat (Triticum aestivum, 2n = 6x = 42, AABBDD) has a complex allohexaploid genome, which makes it difficult to differentiate between the homoeologous sequences and assign them to the chromosome A, B, or D subgenomes. The chromosome-based draft genome sequence of the ‘Chinese Spring’ common wheat cultivar enables the large-scale development of polymerase chain reaction (PCR)-based markers specific for homoeologs. Based on high-confidence ‘Chinese Spring’ genes with known functions, we developed 183 putative homoeolog-specific markers for chromosomes 4B and 7B. These markers were used in PCR assays for the 4B and 7B nullisomes and their euploid synthetic hexaploid wheat (SHW) line that was newly generated from a hybridization between Triticum turgidum (AABB) and the wild diploid species Aegilops tauschii (DD). Up to 64% of the markers for chromosomes 4B or 7B in the SHW background were confirmed to be homoeolog-specific. Thus, these markers were highly transferable between the ‘Chinese Spring’ bread wheat and SHW lines. Homoeolog-specific markers designed using genes with known functions may be useful for genetic investigations involving homoeologous chromosome tracking and homoeolog expression and interaction analyses.
Collapse
Affiliation(s)
- Deying Zeng
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu, Sichuan, 610066, China
| | - Zenglin Li
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Gang Chen
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
- * E-mail: (DL); (MH)
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan, 611130, China
- * E-mail: (DL); (MH)
| |
Collapse
|
7
|
Silkova OG, Loginova DB. Sister chromatid separation and monopolar spindle organization in the first meiosis as two mechanisms of unreduced gametes formation in wheat-rye hybrids. PLANT REPRODUCTION 2016; 29:199-213. [PMID: 26994004 PMCID: PMC4909807 DOI: 10.1007/s00497-016-0279-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/02/2016] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Unreduced gametes. The absence of a strict pachytene checkpoint in plants presents an opportunity to study meiosis in polyhaploid organisms. In the present study, we demonstrate that meiosis is coordinated in hybrids between disomic wheat-rye substitution lines 1Rv(1A), 2R(2D), 5R(5D), 6R(6A) and rye (Triticum aestivum L. × Secale cereale L., 4x = 28, ABDR). By using in situ hybridization with a centromere pAet6-09 probe and immunostaining with H3Ser10ph-, CENH3-, and α-tubulin-specific antibodies, we distinguished four chromosome behaviour types. The first one is a mitotic-like division that is characterized by mitotic centromere architecture, robust bipolar spindle, one-step loss of arm and centromere cohesion, and sister chromatid separation in the first and only meiotic division. The second type involves a monopolar spindle formation, which appears as a hat-shaped group of chromosomes moving in one direction, wherein MT bundles are co-oriented polewards. It prevents chromosome segregation in meiosis I, with a bipolar spindle distributing sister chromatids to the poles in meiosis II. These events subsequently result in the formation of unreduced microspores. The other two meiotic-like chromosome segregation patterns known as reductional and equational plus reductional represent stand-alone types of cell division rather than intermediate steps of meiosis I. Only sterile pollen is produced as a result of such meiotic-like chromosome behaviours. Slightly variable meiotic phenotypes are reproducibly observed in hybrids under different growth conditions. The 2R(2D)xR genotype tends to promote reductional division. In contrast, the genotypes 1Rv(1A)xR, 5R(5D)xR, and 6R(6A)xR promote equational chromosome segregation and monopolar spindle formation in addition to reductional and equational plus reductional division types.
Collapse
Affiliation(s)
- O G Silkova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk, 630090, Russia.
| | - D B Loginova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 10, Novosibirsk, 630090, Russia
| |
Collapse
|
8
|
Hao M, Luo J, Zeng D, Zhang L, Ning S, Yuan Z, Yan Z, Zhang H, Zheng Y, Feuillet C, Choulet F, Yen Y, Zhang L, Liu D. QTug.sau-3B is a major quantitative trait locus for wheat hexaploidization. G3 (BETHESDA, MD.) 2014; 4:1943-53. [PMID: 25128436 PMCID: PMC4199700 DOI: 10.1534/g3.114.013078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/12/2014] [Indexed: 11/18/2022]
Abstract
Meiotic nonreduction resulting in unreduced gametes is thought to be the predominant mechanism underlying allopolyploid formation in plants. Until now, however, its genetic base was largely unknown. The allohexaploid crop common wheat (Triticum aestivum L.), which originated from hybrids of T. turgidum L. with Aegilops tauschii Cosson, provides a model to address this issue. Our observations of meiosis in pollen mother cells from T. turgidum×Ae. tauschii hybrids indicated that first division restitution, which exhibited prolonged cell division during meiosis I, was responsible for unreduced gamete formation. A major quantitative trait locus (QTL) for this trait, named QTug.sau-3B, was detected on chromosome 3B in two T. turgidum×Ae. tauschii haploid populations. This QTL is situated between markers Xgwm285 and Xcfp1012 and covered a genetic distance of 1 cM in one population. QTug.sau-3B is a haploid-dependent QTL because it was not detected in doubled haploid populations. Comparative genome analysis indicated that this QTL was close to Ttam-3B, a collinear homolog of tam in wheat. Although the relationship between QTug.sau-3B and Ttam requires further study, high frequencies of unreduced gametes may be related to reduced expression of Ttam in wheat.
Collapse
Affiliation(s)
- Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Jiangtao Luo
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Deying Zeng
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Li Zhang
- Institute of Ecological Forestry, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Huaigang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, People's Republic of China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Catherine Feuillet
- INRA University Blaise Pascal, Joint Research Unit 1095 Genetics Diversity and Ecophysiology of Cereals, Clermont-Ferrand 63039, France
| | - Frédéric Choulet
- INRA University Blaise Pascal, Joint Research Unit 1095 Genetics Diversity and Ecophysiology of Cereals, Clermont-Ferrand 63039, France
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota 57007
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University at Chengdu, Wenjiang, Sichuan 611130, People's Republic of China Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, People's Republic of China
| |
Collapse
|
9
|
Amphitelic orientation of centromeres at metaphase I is an important feature for univalent-dependent meiotic nonreduction. J Genet 2014; 93:531-4. [DOI: 10.1007/s12041-014-0393-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
De Storme N, Geelen D. Sexual polyploidization in plants--cytological mechanisms and molecular regulation. THE NEW PHYTOLOGIST 2013; 198:670-684. [PMID: 23421646 PMCID: PMC3744767 DOI: 10.1111/nph.12184] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/01/2013] [Indexed: 05/18/2023]
Abstract
In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization.
Collapse
Affiliation(s)
- Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, B-9000, Gent, Belgium
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, B-9000, Gent, Belgium
| |
Collapse
|
11
|
Silkova OG, Shchapova AI, Shumny VK. Meiotic restitution in amphihaploids in the tribe Triticeae. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411040120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zhang L, Zhang L, Luo J, Chen W, Hao M, Liu B, Yan Z, Zhang B, Zhang H, Zheng Y, Liu D, Yen Y. Synthesizing double haploid hexaploid wheat populations based on a spontaneous alloploidization process. J Genet Genomics 2011; 38:89-94. [DOI: 10.1016/j.jcg.2011.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/11/2010] [Accepted: 12/06/2010] [Indexed: 11/28/2022]
|
13
|
Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics 2009; 36:539-46. [PMID: 19782955 DOI: 10.1016/s1673-8527(08)60145-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/18/2009] [Accepted: 04/27/2009] [Indexed: 11/21/2022]
Abstract
Synthetic hexaploid wheat (Triticum turgidumxAegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, research advances on the utilization of synthetic hexaploid wheat for wheat genetic improvement in China are reviewed. Over 200 synthetic hexaploid wheat (SHW) accessions from the International Maize and Wheat Improvement Centre (CIMMYT) were introduced into China since 1995. Four cultivars derived from these, Chuanmai 38, Chuanmai 42, Chuanmai 43 and Chuanmai 47, have been released in China. Of these, Chuanmai 42, with large kernels and resistance to stripe rust, had the highest average yield (>6 t/ha) among all cultivars over two years in Sichuan provincial yield trials, outyielding the commercial check cultivar Chuanmai 107 by 22.7%. Meanwhile, by either artificial chromosome doubling via colchicine treatment or spontaneous chromosome doubling via a union of unreduced gametes (2n) from T. turgidum-Ae. tauschii hybrids, new SHW lines were produced in China. Mitotic-like meiosis might be the cytological mechanism of spontaneous chromosome doubling. SHW lines with genes for spontaneous chromosome doubling may be useful for producing new SHW-alien amphidiploids and double haploid in wheat genetic improvement.
Collapse
|