1
|
Miziak B, Czuczwar SJ, Pluta R. Comorbid epilepsy and depression—pharmacokinetic and pharmacodynamic drug interactions. Front Pharmacol 2022; 13:988716. [PMID: 36278185 PMCID: PMC9585163 DOI: 10.3389/fphar.2022.988716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Major depressive disorder may be encountered in 17% of patients with epilepsy and in patients with drug-resistant epilepsy its prevalence may reach 30%. This indicates that patients with epilepsy may require antidepressant treatment.Purpose: Both pharmacodynamic and pharmacokinetic interactions between antiepileptic (antiseizure) and antidepressant drugs have been reviewed. Also, data on the adverse effects of co-administration of antiepileptic with antidepressant drugs have been added. This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology.Methods: The review of relevant literature was confined to English-language publications in PUBMED databases. Table data show effects of antidepressants on the seizure susceptibility in experimental animals, results of pharmacodynamic interactions between antiepileptic and antidepressant drugs mainly derived from electroconvulsions in mice, as well as results concerning pharmacokinetic interactions between these drugs in clinical conditions.Conclusion: Antidepressant drugs may exert differentiated effects upon the convulsive threshold which may differ in their acute and chronic administration. Animal data indicate that chronic administration of antidepressants could reduce (mianserin, trazodone) or potentiate the anticonvulsant activity of some antiepileptics (fluoxetine, reboxetine, venlafaxine). There are also examples of neutral interactions (milnacipran).
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University, Lublin, Poland
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University, Lublin, Poland
- *Correspondence: Stanisław J. Czuczwar, ; Ryszard Pluta,
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- *Correspondence: Stanisław J. Czuczwar, ; Ryszard Pluta,
| |
Collapse
|
2
|
Luo W, Liu W, Huang Y, Deng X. Anticonvulsant and Proconvulsant Effects of Trazodone in Different Seizure Models. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.1474.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
How Antidepressant Drugs Affect the Antielectroshock Action of Antiseizure Drugs in Mice: A Critical Review. Int J Mol Sci 2021; 22:ijms22052521. [PMID: 33802323 PMCID: PMC7959142 DOI: 10.3390/ijms22052521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 01/07/2023] Open
Abstract
Depression coexists with epilepsy, worsening its course. Treatment of the two diseases enables the possibility of interactions between antidepressant and antiepileptic drugs. The aim of this review was to analyze such interactions in one animal seizure model-the maximal electroshock (MES) in mice. Although numerous antidepressants showed an anticonvulsant action, mianserin exhibited a proconvulsant effect against electroconvulsions. In most cases, antidepressants potentiated or remained ineffective in relation to the antielectroshock action of classical antiepileptic drugs. However, mianserin and trazodone reduced the action of valproate, phenytoin, and carbamazepine against the MES test. Antiseizure drug effects were potentiated by all groups of antidepressants independently of their mechanisms of action. Therefore, other factors, including brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) modulation, should be considered as the background for the effect of drug combinations.
Collapse
|
4
|
Acute and chronic treatment with moclobemide, a reversible MAO-inhibitor, potentiates the antielectroshock activity of conventional antiepileptic drugs in mice. Pharmacol Biochem Behav 2021; 201:173110. [PMID: 33444604 DOI: 10.1016/j.pbb.2021.173110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Due to enhancing serotonergic and noradrenergic neurotransmission, moclobemide may influence seizure phenomena. In this study, we examined the effect of both acute and chronic treatment with moclobemide on seizures and the action of first-generation antiepileptic drugs: valproate, carbamazepine, phenobarbital and phenytoin. METHODS The effect of moclobemide on seizures was assessed in the electroconvulsive threshold test, while its influence on antiepileptic drugs was estimated in the maximal electroshock test in mice. Undesired effects were evaluated in the chimney test (motor impairment) and step-through passive-avoidance task (long-term memory deficits). Finally, brain concentrations of antiepileptics were determined by fluorescence polarization immunoassay. RESULTS Given acutely, moclobemide at 62.5 and 75 mg/kg increased the electroconvulsive threshold. In contrast, chronic treatment with moclobemide up to 75 mg/kg did not influence this parameter. Acute moclobemide applied at subthreshold doses (up to 50 mg/kg) enhanced the antielectroshock effects of carbamazepine, valproate and phenobarbital. Chronic moclobemide (37.5-75 mg/kg) increased the action of all four antiepileptic drugs. All revealed interactions, except these between moclobemide and phenobarbital, seem to have pharmacokinetic nature, because the antidepressant drug, either in acute or in chronic treatment, increased the brain concentrations of respective antiepileptic drugs. In terms of undesired neurotoxic effects, acute and chronic moclobemide, antiepileptic drugs, and their combinations did not produce significant motor or long-term memory impairment. CONCLUSIONS Acute and chronic therapy with moclobemide can increase the effectiveness of some antiepileptic drugs against the maximal electroshock test. In mice, this effect was, at least partially, due to pharmacokinetic interactions. So far as the results of experimental studies can be transferred to clinical conditions, moclobemide seems safe for the application in patients with epilepsy and depression. Possibly, in the case of certain antiepileptic drugs combined with moclobemide, their doses should be adjusted downwards.
Collapse
|
5
|
Borowicz-Reutt KK, Czuczwar SJ, Rusek M. Interactions of antiepileptic drugs with drugs approved for the treatment of indications other than epilepsy. Expert Rev Clin Pharmacol 2020; 13:1329-1345. [PMID: 33305639 DOI: 10.1080/17512433.2020.1850258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Comorbidities of epilepsy may significantly interfere with its treatment as diseases in the general population are also encountered in epilepsy patients and some of them even more frequently (for instance, depression, anxiety, or heart disease). Obviously, some drugs approved for other than epilepsy indications can modify the anticonvulsant activity of antiepileptics. Areas covered: This review highlights the drug-drug interactions between antiepileptics and aminophylline, some antidepressant, antiarrhythmic (class I-IV), selected antihypertensive drugs and non-barbiturate injectable anesthetics (ketamine, propofol, etomidate, and alphaxalone). The data were reviewed mainly from experimental models of seizures. Whenever possible, clinical data were provided. PUBMED data base was the main search source.Expert opinion: Aminophylline generally reduced the protective activity of antiepileptics, which, to a certain degree, was consistent with scarce clinical data on methylxanthine derivatives and worse seizure control. The only antiarrhythmic with this profile of action was mexiletine when co-administered with VPA. Among antidepressants and non-barbiturate injectable anesthetics, trazodone, mianserin and etomidate or alphaxalone, respectively, negatively affected the anticonvulsant action of some antiepileptic drugs. Clinical data indicate that only amoxapine, bupropion, clomipramine and maprotiline should be used with caution. Possibly, drugs reducing the anticonvulsant potential of antiepileptics should be avoided in epilepsy patients.
Collapse
Affiliation(s)
- Kinga K Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University of Lublin , Lublin, Poland
| | | | - Marta Rusek
- Department of Pathophysiology, Medical University of Lublin , Lublin, Poland.,Department of Dermatology, Venereology and Pediatric Dermatology, Laboratory for Immunology of Skin Diseases, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
6
|
Trazodone increases seizures in a genetic WAG/Rij rat model of absence epilepsy while decreasing them in penicillin-evoked focal seizure model. Epilepsy Behav 2020; 103:106847. [PMID: 31864946 DOI: 10.1016/j.yebeh.2019.106847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
AIM Psychiatric disorders, especially depression and anxiety, are among the most disabling comorbidities in patients with epilepsy, and they are difficult to treat because many antidepressants cause proconvulsive effects. Thus, it is important to identify the seizure risks associated with antidepressants. Trazodone is one of the most frequently prescribed selective serotonin reuptake inhibitor (SSRI) antidepressant drugs for the treatment of depression and anxiety. The aim of the present study was to evaluate the effects of trazodone on epileptiform activity in a penicillin-evoked focal seizure model in Wistar rats and in a genetic absence epilepsy model in Wistar Albino Glaxo/Rijswijk strain (WAG/Rij) rats. METHODS Trazodone at 5-, 10-, and 30-mg/kg doses was injected intraperitoneally in Wistar rats 30 min after penicillin injection, and spike frequency and amplitude of penicillin-induced epileptiform activity were evaluated. In a separate experimental model, the same trazodone doses were injected in WAG/Rij rats to elucidate their effects on number, duration, and amplitude of spike-and-wave discharges (SWDs) and on depression-anxiety like behavior. In both experimental groups, after trazodone injections recordings were made for 3 h. Depression-anxiety like behaviors in WAG/Rij rats were examined using forced swim test and open-field test. RESULTS Trazodone at 10- and 30-mg/kg doses significantly reduced the frequency of penicillin-induced epileptiform activity without changing the amplitude. Trazodone at a 5-mg/kg dose had no effect on either frequency or amplitude of epileptiform activity. Trazodone at all doses significantly increased number and duration of SWDs without changing the amplitude. In addition, all doses of trazodone decreased the number of squares crossed and duration of grooming in open-field test, and reduced swimming time activity and increased immobility time in forced swim test. CONCLUSION Our results suggest that depending on the dose used, trazodone had an anticonvulsant effect or no effect on penicillin-evoked focal seizure model, but all trazodone doses resulted in proconvulsant and depression-anxiety like behavior in WAG/Rij rats, which represent a genetic absence model of epilepsy.
Collapse
|
7
|
Griffin A, Hamling KR, Knupp K, Hong S, Lee LP, Baraban SC. Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndrome. Brain 2017; 140:669-683. [PMID: 28073790 DOI: 10.1093/brain/aww342] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/18/2016] [Indexed: 01/01/2023] Open
Abstract
Dravet syndrome is a catastrophic childhood epilepsy with early-onset seizures, delayed language and motor development, sleep disturbances, anxiety-like behaviour, severe cognitive deficit and an increased risk of fatality. It is primarily caused by de novo mutations of the SCN1A gene encoding a neuronal voltage-activated sodium channel. Zebrafish with a mutation in the SCN1A homologue recapitulate spontaneous seizure activity and mimic the convulsive behavioural movements observed in Dravet syndrome. Here, we show that phenotypic screening of drug libraries in zebrafish scn1 mutants rapidly and successfully identifies new therapeutics. We demonstrate that clemizole binds to serotonin receptors and its antiepileptic activity can be mimicked by drugs acting on serotonin signalling pathways e.g. trazodone and lorcaserin. Coincident with these zebrafish findings, we treated five medically intractable Dravet syndrome patients with a clinically-approved serotonin receptor agonist (lorcaserin, Belviq®) and observed some promising results in terms of reductions in seizure frequency and/or severity. Our findings demonstrate a rapid path from preclinical discovery in zebrafish, through target identification, to potential clinical treatments for Dravet syndrome.
Collapse
Affiliation(s)
- Aliesha Griffin
- Epilepsy Research Laboratory and Weill Institute for Neurosciences, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kyla R Hamling
- Epilepsy Research Laboratory and Weill Institute for Neurosciences, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kelly Knupp
- Department of Pediatrics, University of Colorado Denver, Denver, CO, USA
| | - SoonGweon Hong
- Departments of Bioengineering, Electrical Engineering and Computer Science, and Biophysics Program, University of California, Berkeley, Berkeley, CA, USA
| | - Luke P Lee
- Departments of Bioengineering, Electrical Engineering and Computer Science, and Biophysics Program, University of California, Berkeley, Berkeley, CA, USA
| | - Scott C Baraban
- Epilepsy Research Laboratory and Weill Institute for Neurosciences, Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Banach M, Popławska M, Błaszczyk B, Borowicz KK, Czuczwar SJ. Pharmacokinetic/pharmacodynamic considerations for epilepsy - depression comorbidities. Expert Opin Drug Metab Toxicol 2016; 12:1067-80. [PMID: 27267259 DOI: 10.1080/17425255.2016.1198319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Epilepsy may be frequently associated with psychiatric disorders and its co-existence with depression usually results in the reduced quality of life of patients with epilepsy. Also, the efficacy of antiepileptic treatment in depressed patients with epilepsy may be significantly reduced. AREAS COVERED Results of experimental studies indicate that antidepressants co-administered with antiepileptic drugs may either increase their anticonvulsant activity, remain neutral or decrease the protective action of antiepileptic drugs in models of seizures. Apart from purely pharmacodynamic interactions, pharmacokinetic mechanisms have been proven to contribute to the final outcome. We report on clinical data regarding the pharmacokinetic interactions of enzyme-inducing antiepileptic drugs with various antidepressants, whose plasma concentration may be significantly reduced. On the other hand, antidepressants (especially selective serotonin reuptake inhibitors) may influence the metabolism of antiepileptics, in many cases resulting in the elevation of plasma concentration of antiepileptic drugs. EXPERT OPINION The preclinical data may provide valuable clues on how to combine these two groups of drugs - antidepressant drugs neutral or potentiating the anticonvulsant action of antiepileptics are recommended in this regard. Avoidance of antidepressants clearly decreasing the convulsive threshold or decreasing the anticonvulsant efficacy of antiepileptic drugs (f.e. bupropion or mianserin) in patients with epilepsy is recommended.
Collapse
Affiliation(s)
- Monika Banach
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Monika Popławska
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Barbara Błaszczyk
- b Faculty of Health Sciences , High School of Economics, Law and Medical Sciences , Kielce , Poland
| | - Kinga K Borowicz
- a Experimental Neuropathophysiology Unit, Department of Pathophysiology , Medical University , Lublin , Poland
| | - Stanisław J Czuczwar
- c Department of Pathophysiology , Medical University , Lublin , Poland.,d Department of Physiopathology , Institute of Rural Health , Lublin , Poland
| |
Collapse
|
9
|
Borowicz KK, Zarczuk R, Latalski M, Borowicz KM. Reboxetine and its influence on the action of classical antiepileptic drugs in the mouse maximal electroshock model. Pharmacol Rep 2014; 66:430-5. [PMID: 24905519 DOI: 10.1016/j.pharep.2013.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 11/07/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Our previous studies revealed that different classes of antidepressant drugs differently affect seizure phenomena. Continuing our research in this field, in the present study we wanted to investigate the influence of acute and chronic treatment with reboxetine, a selective norepinephrine reuptake inhibitor, on the anticonvulsant action of classical antiepileptic drugs. METHODS Experiments were conducted in the model of electroconvulsive threshold and maximal electroshock in mice. Motor coordination was evaluated in the chimney test and long term memory in the step-through passive avoidance task. Brain concentrations of antiepileptic drugs were detected by fluorescence polarization immunoassay. RESULTS Acute treatment with reboxetine (8-16 mg/kg) significantly raised the electroconvulsive threshold. In contrast, chronic reboxetine (2-16 mg/kg) did not affect this parameter. Single administration of the antidepressant applied at its subthreshold doses enhanced the action of valproate, carbamazepine and phenobarbital. The antielectroshock effect of phenytoin was also potentiated by acute reboxetine, but only at doses increasing the threshold. Repeated administration of reboxetine (8-12 mg/kg) enhanced the anticonvulsant action of carbamazepine, but not that of three remaining antiepileptic drugs. Neither acute nor chronic reboxetine changed the brain concentrations of valproate, carbamazepine, phenytoin or phenobarbital. Therefore, all revealed interactions seem to be pharmacodynamic. In terms of undesired effects, acute/chronic reboxetine and its combinations with classical antiepileptic drugs did not significantly impair motor performance or long-term memory in mice. CONCLUSIONS As far as the obtained data can be extrapolated into clinical conditions, it seems that reboxetine may be safely used in the treatment of depressive disorders in epileptic patients.
Collapse
Affiliation(s)
- Kinga K Borowicz
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University, Lublin, Poland.
| | - Radosław Zarczuk
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University, Lublin, Poland
| | - Michał Latalski
- Clinic for Children's Orthopaedics, Medical University, Lublin, Poland
| | - Kornel M Borowicz
- Independent Unit of Experimental Neuropathophysiology, Department of Pathophysiology, Medical University, Lublin, Poland
| |
Collapse
|
10
|
Effect of acute and chronic tianeptine on the action of classical antiepileptics in the mouse maximal electroshock model. Pharmacol Rep 2014; 65:379-88. [PMID: 23744422 DOI: 10.1016/s1734-1140(13)71013-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/02/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND The aim of the study was to analyze the influence of acute and chronic treatment with tianeptine, an antidepressant selectively accelerating presynaptic serotonin reuptake, on the protective activity of classical antiepileptic drugs in the maximal electroshock test in mice. METHODS Electroconvulsions were produced by means of an alternating current (50 Hz, 25 mA, 0.2 s) delivered via ear-clip electrodes. Motor impairment and long-term memory deficits in animals were quantified in the chimney test and in the passive-avoidance task, respectively. Brain concentrations of antiepileptic drugs were measured by fluorescence polarization immunoassay. RESULTS Acute and chronic treatment with tianeptine (25-50 mg/kg) did not affect the electroconvulsive threshold. Furthermore, tianeptine applied in both acute and chronic protocols enhanced the anticonvulsant action of valproate and carbamazepine, but not that of phenytoin. Neither acute nor chronic tianeptine changed the brain concentrations of valproate, carbamazepine or phenytoin. On the other hand, both single and chronic administration of tianeptine diminished the brain concentration of phenobarbital. In spite of this pharmacokinetic interaction, the antidepressant enhanced the antielectroshock action of phenobarbital. In terms of adverse effects, acute/chronic tianeptine (50 mg/kg) and its combinations with classic antiepileptic drugs did not impair motor performance or long-term memory in mice. CONCLUSION The obtained results justify the conclusion that tianeptine may be beneficial in the treatment of depressive disorders in the course of epilepsy.
Collapse
|