1
|
Kubacka M, Nowak B, Zadrożna M, Szafarz M, Latacz G, Marona H, Sapa J, Mogilski S, Bednarski M, Kotańska M. Manifestations of Liver Impairment and the Effects of MH-76, a Non-Quinazoline α1-Adrenoceptor Antagonist, and Prazosin on Liver Tissue in Fructose-Induced Metabolic Syndrome. Metabolites 2023; 13:1130. [PMID: 37999226 PMCID: PMC10672990 DOI: 10.3390/metabo13111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Excessive fructose consumption may lead to metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD) and hypertension. α1-adrenoceptors antagonists are antihypertensive agents that exert mild beneficial effects on the metabolic profile in hypertensive patients. However, they are no longer used as a first-line therapy for hypertension based on Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) outcomes. Later studies have shown that quinazoline-based α1-adrenolytics (prazosin, doxazosin) induce apoptosis; however, this effect was independent of α1-adrenoceptor blockade and was associated with the presence of quinazoline moiety. Recent studies showed that α1-adrenoceptors antagonists may reduce mortality in COVID-19 patients due to anti-inflammatory properties. MH-76 (1-[3-(2,6-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride)) is a non-quinazoline α1-adrenoceptor antagonist which, in fructose-fed rats, exerted anti-inflammatory, antihypertensive properties and reduced insulin resistance and visceral adiposity. In this study, we aimed to evaluate the effect of fructose consumption and treatment with α1-adrenoceptor antagonists of different classes (MH-76 and prazosin) on liver tissue of fructose-fed rats. Livers were collected from four groups (Control, Fructose, Fructose + MH-76 and Fructose + Prazosin) and subjected to biochemical and histopathological studies. Both α1-adrenolytics reduced macrovesicular steatosis and triglycerides content of liver tissue and improved its antioxidant capacity. Treatment with MH-76, contrary to prazosin, reduced leucocytes infiltration as well as decreased elevated IL-6 and leptin concentrations. Moreover, the MH-76 hepatotoxicity in hepatoma HepG2 cells was less than that of prazosin. The use of α1-adrenolytics with anti-inflammatory properties may be an interesting option for treatment of hypertension with metabolic complications.
Collapse
Affiliation(s)
- Monika Kubacka
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (M.K.); (J.S.); (S.M.)
| | - Barbara Nowak
- Department of Cytobiology, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (B.N.); (M.Z.)
| | - Monika Zadrożna
- Department of Cytobiology, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (B.N.); (M.Z.)
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland;
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland;
| | - Henryk Marona
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland;
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (M.K.); (J.S.); (S.M.)
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (M.K.); (J.S.); (S.M.)
| | - Marek Bednarski
- Department of Pharmacological Screening, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland;
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland;
| |
Collapse
|
2
|
Elsadek MF, Almoajel A, Farahat MF. Ameliorative effects of ribes rubrum oil against gastric ulcers caused by indomethacin in experimental models. Saudi J Biol Sci 2022; 29:30-34. [PMID: 35002392 PMCID: PMC8716960 DOI: 10.1016/j.sjbs.2021.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to assess the anti-inflammatory effects of ribes rubrum oil at three different doses (5, 10 and 15 ml/kg b.w/day) in adult male albino rats with indomethacin-induced stomach ulcers (IND). Forty rats (135 ± 5 g) categorized into 5 groups (n = 8), for 45 days. Group (1) normal control, thirty-two rats were gavaged IND as single oral dose (30 mg/Kg b.w) resulted in gastric ulcer, then distributed to four groups, group (2) IND-intoxicated control, Groups 3, 4 and 5 were administrated ribes rubrum oil at levels of (5, 10 & 15 ml/kg b.w) respectively. Administrated levels of ribes rubrum oil found to have remarkable elevation in food conversion efficiency in experimental rats, gastric juice pH, in compared to the drunken control group, gastric prostaglandin E2 and gastric cytochrome P450 reductase levels were lower. The levels of pro-inflammatory cytokines NO, TNF-, and IL-1 were dramatically reduced, which was related with an increase in blood hemoglobin (Hb), packed cell volume (PCV), and red blood cells (RBCs)in ulcerogenic rats compared to intoxicated control. Data showed that, the main components of ribes rubrum oil are β-Pinene, γ-linolenic and Linalool oxide levels (25.9%, 23.10% and 10.5%, respectively) for their antioxidant activity. Findings showed that administrate ribes rubrum oil at dose 15 ml/kg followed by 10 ml/kg had the best results against ulcerogenic rats. In conclusion, the outcomes are consistent with the concept that ribes rubrum oil had a gastroprotective and antisecretory effects against gastric ulcer that may be attributed to the antioxidant properties of the oil that ameliorates the damage occur in gastric of rats.
Collapse
Affiliation(s)
- Mohamed Farouk Elsadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Alyah Almoajel
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mohammed Fawzi Farahat
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| |
Collapse
|
3
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
4
|
The Effect of Chronic Mild Stress and Imipramine on the Markers of Oxidative Stress and Antioxidant System in Rat Liver. Neurotox Res 2016; 30:173-84. [PMID: 26961706 PMCID: PMC4947122 DOI: 10.1007/s12640-016-9614-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023]
Abstract
Liver abnormalities have been reported to occur in up to 20 % of patients on a long-term therapy with the tricyclic antidepressant drug imipramine (IMI). The mechanism involved in this IMI-induced process is unknown but a contribution of oxidative stress is highly likely. Chronic mild stress (CMS) is widely used for modeling depressive-like behavior in rats. In the present study, we examined the effects of CMS and chronic IMI treatment, applied alone or in combination, on the levels of oxidative stress markers, such as reactive oxygen species (ROS), malondialdehyde (MDA), non-protein sulfhydryl groups, and sulfane sulfur as well as on activities of key antioxidant enzymes: catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase in the rat liver. Administration of IMI for 5 weeks to rats subjected to CMS resulted in a gradual significant reduction of anhedonia measured by sucrose intake, in a majority of animals (CMS IMI-reactive, CMS IMI-R), although about 20 % of rats did not respond to the IMI treatment (CMS IMI non-reactive, CMS IMI-NR). CMS-induced hepatic oxidative stress, estimated by increased ROS and MDA concentrations, was not prevented by the IMI administration, moreover, in CMS IMI-NR animals, the level of the marker of lipid peroxidation, i.e., MDA was increased in comparison to CMS-subjected rats and activity of antioxidant enzymes (GPx and CAT) was decreased compared to IMI-treated rats. The clinical significance of this observation remains to be established.
Collapse
|
5
|
Lei R, Yang B, Wu C, Liao M, Ding R, Wang Q. Mitochondrial dysfunction and oxidative damage in the liver and kidney of rats following exposure to copper nanoparticles for five consecutive days. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00156g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial dysfunction and oxidative damage may be the initial events of copper nanoparticle (CuNP)-induced hepato and nephrotoxicity.
Collapse
Affiliation(s)
- Ronghui Lei
- State Key Laboratory of Toxicology and Medical Countermeasures
- Institute of Pharmacology and Toxicology
- Academy of Military Medical Sciences
- Beijing
- P. R. China
| | - Baohua Yang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Institute of Pharmacology and Toxicology
- Academy of Military Medical Sciences
- Beijing
- P. R. China
| | - Chunqi Wu
- State Key Laboratory of Toxicology and Medical Countermeasures
- Institute of Pharmacology and Toxicology
- Academy of Military Medical Sciences
- Beijing
- P. R. China
| | - Mingyang Liao
- State Key Laboratory of Toxicology and Medical Countermeasures
- Institute of Pharmacology and Toxicology
- Academy of Military Medical Sciences
- Beijing
- P. R. China
| | - Rigao Ding
- State Key Laboratory of Toxicology and Medical Countermeasures
- Institute of Pharmacology and Toxicology
- Academy of Military Medical Sciences
- Beijing
- P. R. China
| | - Quanjun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Institute of Pharmacology and Toxicology
- Academy of Military Medical Sciences
- Beijing
- P. R. China
| |
Collapse
|
6
|
Polysulfide exerts a protective effect against cytotoxicity caused by t-buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells. FEBS Lett 2013; 587:3548-55. [PMID: 24055470 DOI: 10.1016/j.febslet.2013.09.013] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 09/10/2013] [Indexed: 11/21/2022]
Abstract
Polysulfide is a bound sulfur species derived from endogenous H2S. When mouse neuroblastoma, Neuro2A cells were exposed to tert-butyl hydroperoxide after treatment with polysulfide, a significant decline in cell toxicity was observed. Rapid uptake of polysulfides induced translocation of Nrf2 into the nucleus, resulting in acceleration of GSH synthesis and HO-1 expression. We demonstrated that polysulfide reversibly modified Keap1 to form oxidized dimers and induced the translocation of Nrf2. Moreover, polysulfide treatment accelerated Akt phosphorylation, which is a known pathway of Nrf2 phosphorylation. Thus, polysulfide may mediate the activation of Nrf2 signaling, thereby exerting protective effects against oxidative damage in Neuro2A cells.
Collapse
|