1
|
Martinez Ledo A, Thibodeaux S, Duong L, Altinoglu E, Dimke T, Shaw D, Rowlands D, Growcott E. Aerosol technology to mimic dry powder inhalation in vitro using pulmonary cell models. Eur J Pharm Biopharm 2023:S0939-6411(23)00123-6. [PMID: 37196872 DOI: 10.1016/j.ejpb.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Inhaled therapy confers key advantages for the treatment of topical pulmonary diseases and offers potential for systemic delivery of medicines. Dry powder inhalers (DPIs) are generally the preferred devices for pulmonary delivery due to improved stability and satisfactory patient compliance. However, the mechanisms governing drug powder dissolution and availability in the lung and poorly understood. Here, we report a new in vitro system to study epithelial absorption of inhaled dry powders in lung barrier models of the upper and lower airway. The system is based on a CULTEX® RFS (Radial Flow System) cell exposure module joined to a Vilnius aerosol generator and allows the coupling of drug dissolution and permeability assessments. The cellular models recapitulate the barrier morphology and function of healthy and diseased pulmonary epithelium and incorporate the mucosal barrier to enable the investigation of drug powder dissolution in biorelevant conditions. With this system, we found differences in permeability across the airway tree and pinpointed the impact of diseased barriers in paracellular drug transport. Furthermore, we identified a different rank order of permeability for compounds tested in solution or powder form. These results highlight the value of this in vitro drug aerosolization setup for use in research and development of inhaled medicines.
Collapse
Affiliation(s)
- Adriana Martinez Ledo
- Disease Area X, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, 02139, United States
| | - Stefan Thibodeaux
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, 02139, United States
| | - Lisa Duong
- Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, 02139, United States
| | - Erhan Altinoglu
- Chemical and Pharmaceutical Profiling, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, 02139, United States
| | - Thomas Dimke
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland
| | - Duncan Shaw
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, 02139, United States
| | - David Rowlands
- Disease Area X, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, 02139, United States.
| | - Ellena Growcott
- Disease Area X, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, 02139, United States.
| |
Collapse
|
2
|
Primavessy D, Metz J, Schnur S, Schneider M, Lehr CM, Hittinger M. Pulmonary in vitro instruments for the replacement of animal experiments. Eur J Pharm Biopharm 2021; 168:62-75. [PMID: 34438019 DOI: 10.1016/j.ejpb.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Advanced in vitro systems often combine a mechanical-physical instrument with a biological component e.g. cell culture models. For testing of aerosols, it is of advantage to consider aerosol behavior, particle deposition and lung region specific cell lines. Although there are many good reviews on the selection of cell cultures, articles on instruments are rare. This article focuses on the development of in vitro instruments targeting the exposure of aerosols on cell cultures. In this context, guidelines for toxicity investigation are taken into account as the aim of new methods must be the prediction of human relevant data and the replacement of existing animal experiments. We provide an overview on development history of research-based instruments from a pharmaceutical point of view. The standardized commercial devices resulting from the research-based instruments are presented and the future perspectives on pulmonary in vitro devices are discussed.
Collapse
Affiliation(s)
- Daniel Primavessy
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany.
| | - Julia Metz
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany
| | - Sabrina Schnur
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Marius Hittinger
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; 3RProducts Marius Hittinger, Blieskastel, Germany
| |
Collapse
|
3
|
Radivojev S, Luschin-Ebengreuth G, Pinto JT, Laggner P, Cavecchi A, Cesari N, Cella M, Melli F, Paudel A, Fröhlich E. Impact of simulated lung fluid components on the solubility of inhaled drugs and predicted in vivo performance. Int J Pharm 2021; 606:120893. [PMID: 34274456 DOI: 10.1016/j.ijpharm.2021.120893] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022]
Abstract
Orally inhaled products (OIPs) are gaining increased attention, as pulmonary delivery is a preferred route for the treatment of various diseases. Yet, the field of inhalation biopharmaceutics is still in development phase. For a successful correlation between various in vitro data obtained during formulation characterization and in vivo performance, it is necessary to understand the impact of parameters such as solubility and dissolution of drugs. In this work, we used in vitro-in silico feedback-feedforward approach to gain a better insight into the biopharmaceutics behavior of inhaled Salbutamol Sulphate (SS) and Budesonide (BUD). The thorough characterization of the in vitro test media and the impact of different in vitro fluid components such as lipids and protein on the solubility of aforementioned drugs was studied. These results were subsequently used as an input into the developed in silico models to investigate potential PK parameter changes in vivo. Results revealed that media comprising lipids and albumin were the most biorelevant and impacted the solubility of BUD the most. On the contrary, no notable impact was seen in case of SS. The use of simple media such as phosphate buffer saline (PBS) might be sufficient to use in solubility studies of the highly soluble and permeable drugs. However, its use for the poorly soluble drugs is limited due to the greater potential for interactions within in vivo environment. The use of in silico tools showed that the model response varies, depending on the used media. Therefore, this work highlights the relevance of carefully selecting the media composition when investigating solubility and dissolution behavior, especially in the early phases of drug development and of poorly soluble drugs.
Collapse
Affiliation(s)
- Snezana Radivojev
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Center for Medical Research, Medical University of Graz, Stiftingtalstraße 24, Graz 8010, Austria
| | | | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria
| | - Peter Laggner
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria
| | | | - Nicola Cesari
- Chiesi Farmaceutici S.p.A., Via Palermo, 26 A, Parma, 43122, Italy
| | - Massimo Cella
- Chiesi Farmaceutici S.p.A., Via Palermo, 26 A, Parma, 43122, Italy
| | - Fabrizio Melli
- Chiesi Farmaceutici S.p.A., Via Palermo, 26 A, Parma, 43122, Italy
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, Graz, 8010, Austria.
| | - Eleonore Fröhlich
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Center for Medical Research, Medical University of Graz, Stiftingtalstraße 24, Graz 8010, Austria.
| |
Collapse
|
4
|
In vitro investigation on the impact of airway mucus on drug dissolution and absorption at the air-epithelium interface in the lungs. Eur J Pharm Biopharm 2019; 141:210-220. [DOI: 10.1016/j.ejpb.2019.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/07/2023]
|
5
|
Dry powder inhalers: An overview of the in vitro dissolution methodologies and their correlation with the biopharmaceutical aspects of the drug products. Eur J Pharm Sci 2018; 113:18-28. [DOI: 10.1016/j.ejps.2017.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 11/17/2022]
|
6
|
Das SC, Stewart PJ. The influence of lung surfactant liquid crystalline nanostructures on respiratory drug delivery. Int J Pharm 2016; 514:465-474. [PMID: 27321111 DOI: 10.1016/j.ijpharm.2016.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
The respiratory route increasingly has been used for both local and systemic drug delivery. Although drug is absorbed rapidly after respiratory delivery, the role of lung surfactant in drug delivery is not well understood. The human lung contains only around 15mL of surface lining fluid spread over ∼100m2 surface. The fluid contains lung surfactant at a concentration of 8-24mg/kg/body weight; the lung surfactant which is lipo-protein in nature can form different liquid crystalline nanostructures. After a brief overview of the anatomy of respiratory system, the review has focused on the current understanding of lung surface lining fluid, lung surfactants and their composition and possible self-assembled nanostructures. The role of lung surfactant in drug delivery and drug dissolution has been briefly considered. Lung surfactant may form different liquid crystalline phases which can have an active role in drug delivery. The hypotheses developed in this review focuses on the potential roles of surface epithelial fluid containing liquid crystalline nanostructures in defining the dissolution mechanism and rate. The hypotheses also focus an understanding how liquid crystalline nanostructures can be used to control dissolution rate and how the nanostructures might be changed to influence delivery and induce toxicity.
Collapse
Affiliation(s)
- Shyamal C Das
- New Zealand's National School of Pharmacy, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - Peter J Stewart
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
7
|
Forbes B, Bäckman P, Christopher D, Dolovich M, Li BV, Morgan B. In Vitro Testing for Orally Inhaled Products: Developments in Science-Based Regulatory Approaches. AAPS JOURNAL 2015; 17:837-52. [PMID: 25940082 DOI: 10.1208/s12248-015-9763-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022]
Abstract
This article is part of a series of reports from the "Orlando Inhalation Conference-Approaches in International Regulation" which was held in March 2014, and coorganized by the University of Florida and the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS). The goal of the conference was to foster the exchange of ideas and knowledge across the global scientific and regulatory community in order to identify and help move towards strategies for internationally harmonized, science-based regulatory approaches for the development and marketing approval of inhalation medicines, including innovator and second entry products. This article provides an integrated perspective of case studies and discussion related to in vitro testing of orally inhaled products, including in vitro-in vivo correlations and requirements for in vitro data and statistical analysis that support quality or bioequivalence for regulatory applications.
Collapse
Affiliation(s)
- Ben Forbes
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK,
| | | | | | | | | | | |
Collapse
|
8
|
May S, Jensen B, Weiler C, Wolkenhauer M, Schneider M, Lehr CM. Dissolution testing of powders for inhalation: influence of particle deposition and modeling of dissolution profiles. Pharm Res 2014; 31:3211-24. [PMID: 24852894 DOI: 10.1007/s11095-014-1413-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/06/2014] [Indexed: 11/24/2022]
Abstract
PURPOSE The aim of this study was to investigate influencing factors on the dissolution test for powders for pulmonary delivery with USP apparatus 2 (paddle apparatus). METHODS We investigated the influence of dose collection method, membrane holder type and the presence of surfactants on the dissolution process. Furthermore, we modeled the in vitro dissolution process to identify influencing factors on the dissolution process of inhaled formulations based on the Nernst-Brunner equation. RESULTS A homogenous distribution of the powder was required to eliminate mass dependent dissolution profiles. This was also found by modeling the dissolution process under ideal conditions. Additionally, it could be shown that influence on the diffusion pathway depends on the solubility of the substance. CONCLUSION We demonstrated that the use of 0.02% DPPC in the dissolution media results in the most discriminating and reproducible dissolution profiles. In the model section we demonstrated that the dissolution process depends strongly on saturation solubility and particle size. Under defined assumptions we were able show that the model is predicting the experimental dissolution profiles.
Collapse
|
9
|
Grainger CI, Saunders M, Buttini F, Telford R, Merolla LL, Martin GP, Jones SA, Forbes B. Critical Characteristics for Corticosteroid Solution Metered Dose Inhaler Bioequivalence. Mol Pharm 2012; 9:563-9. [DOI: 10.1021/mp200415g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. I. Grainger
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street,
London, SE1 9NH, U.K
| | - M. Saunders
- Kuecept Ltd, 16/17 Station Close, Potters Bar, Hertfordshire,
EN7 1TL, U.K
| | - F. Buttini
- Department
of Pharmacy, University of Parma, Parma,
Italy
| | - R. Telford
- Analytical Centre, University of Bradford, BD7 1DP, U.K
| | - L. L. Merolla
- Safety and Environmental Assurance Centre, Unilever Colworth, Sharnbrook, MK44 1LQ, U.K
| | - G. P. Martin
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street,
London, SE1 9NH, U.K
| | - S. A. Jones
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street,
London, SE1 9NH, U.K
| | - B. Forbes
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street,
London, SE1 9NH, U.K
| |
Collapse
|
10
|
Suspension versus solution metered dose inhalers: different products, different particles? J Drug Deliv Sci Technol 2011. [DOI: 10.1016/s1773-2247(11)50049-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|