1
|
Pattanaik MS, Varma VB, Cheekati SK, Chaudhary V, Ramanujan RV. Optimal ferrofluids for magnetic cooling devices. Sci Rep 2021; 11:24167. [PMID: 34921195 PMCID: PMC8683428 DOI: 10.1038/s41598-021-03514-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Superior passive cooling technologies are urgently required to tackle device overheating, consequent performance degradation, and service life reduction. Magnetic cooling, governed by the thermomagnetic convection of a ferrofluid, is a promising emerging passive heat transfer technology to meet these challenges. Hence, we studied the performance metrics, non-dimensional parameters, and thermomagnetic cooling performance of various ferrite and metal-based ferrofluids. The magnetic pressure, friction factor, power transfer, and exergy loss were determined to predict the performance of such cooling devices. We also investigated the significance of the magnetic properties of the nanoparticles used in the ferrofluid on cooling performance. γ-Fe2O3, Fe3O4, and CoFe2O4 nanoparticles exhibited superior cooling performance among ferrite-based ferrofluids. FeCo nanoparticles had the best cooling performance for the case of metallic ferrofluids. The saturation magnetization of the magnetic nanoparticles is found to be a significant parameter to enhance heat transfer and heat load cooling. These results can be used to select the optimum magnetic nanoparticle-based ferrofluid for a specific magnetic cooling device application.
Collapse
Affiliation(s)
- M. S. Pattanaik
- grid.59025.3b0000 0001 2224 0361School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore ,grid.499358.aSingapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602 Singapore
| | - V. B. Varma
- grid.59025.3b0000 0001 2224 0361School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore ,grid.499358.aSingapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602 Singapore
| | - S. K. Cheekati
- grid.59025.3b0000 0001 2224 0361School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore ,grid.499358.aSingapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602 Singapore
| | - V. Chaudhary
- grid.59025.3b0000 0001 2224 0361School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - R. V. Ramanujan
- grid.59025.3b0000 0001 2224 0361School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore ,grid.499358.aSingapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy-Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602 Singapore
| |
Collapse
|
2
|
Cruz dos Santos S, Osti Silva N, dos Santos Espinelli JB, Germani Marinho MA, Vieira Borges Z, Bruzamarello Caon Branco N, Faita FL, Meira Soares B, Horn AP, Parize AL, Rodrigues de Lima V. Molecular interactions and physico-chemical characterization of quercetin-loaded magnetoliposomes. Chem Phys Lipids 2019; 218:22-33. [DOI: 10.1016/j.chemphyslip.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/30/2018] [Accepted: 11/30/2018] [Indexed: 01/02/2023]
|
3
|
Sadr SH, Davaran S, Alizadeh E, Salehi R, Ramazani A. PLA-based magnetic nanoparticles armed with thermo/pH responsive polymers for combination cancer chemotherapy. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Duan Y, Liu Y, Li J, Wang H, Wen S. Investigation on the Nanomechanics of Liposome Adsorption on Titanium Alloys: Temperature and Loading Effects. Polymers (Basel) 2018; 10:polym10040383. [PMID: 30966418 PMCID: PMC6415199 DOI: 10.3390/polym10040383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 01/08/2023] Open
Abstract
The mechanical properties of liposomes, determined by the lipid phase state at ambient temperature, have a close relationship with their physiological activities. Here, atomic force microscopy (AFM) was used to produce images and perform force measurements on titanium alloys at two adsorbed temperatures. The mechanical properties were evaluated under repeated loading and unloading, suggesting a better reversibility and resistance of gel phase liposomes. The liquid phase liposomes were irreversibly damaged during the first approach while the gel phase liposomes could bear more iterations, resulting from water flow reversibly going across the membranes. The statistical data offered strong evidence that the lipid membranes in the gel phase are robust enough to resist the tip penetration, mainly due to their orderly organization and strong hydrophobic interactions between lipid molecules. This work regarding the mechanical properties of liposomes with different phases provides guidance for future clinical applications, such as artificial joints.
Collapse
Affiliation(s)
- Yiqin Duan
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Jinjin Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Hongdong Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Shizhu Wen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Millart E, Lesieur S, Faivre V. Superparamagnetic lipid-based hybrid nanosystems for drug delivery. Expert Opin Drug Deliv 2018. [DOI: 10.1080/17425247.2018.1453804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- E. Millart
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - S. Lesieur
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - V. Faivre
- Institut Galien Paris-Sud, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
6
|
Hofer CJ, Grass RN, Schneider EM, Hendriks L, Herzog AF, Zeltner M, Günther D, Stark WJ. Water dispersible surface-functionalized platinum/carbon nanorattles for size-selective catalysis. Chem Sci 2018; 9:362-367. [PMID: 29629105 PMCID: PMC5868313 DOI: 10.1039/c7sc03785f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
Selective dealloying of metal nanoparticles results in rattle-type hollow carbon nanoshells enclosing platinum nanoparticles, which are able to perform size-selective catalysis. Selective functionalization of the outer graphene-like carbon surface prevents agglomeration and leads to well dispersible nanocatalysts in aqueous solutions. The synthesis starts with the production of nanoparticles with a cobalt-platinum-alloy core surrounded by graphene-like carbon via reducing flame spray synthesis. After surface functionalization, simultaneous pore formation in the shell-wall and dissolution of the cobalt results in platinum encapsulated in hollow carbon nanospheres. Catalytic oxidation of differently sized sugars (glucose and maltoheptaose) reveales size-selective catalytic properties of these platinum nanorattles.
Collapse
Affiliation(s)
- Corinne J Hofer
- Institute for Chemical and Bioengineering , ETH Zurich , Vladimir-Prelog-Weg 1 , 8093 Zurich , Switzerland .
| | - Robert N Grass
- Institute for Chemical and Bioengineering , ETH Zurich , Vladimir-Prelog-Weg 1 , 8093 Zurich , Switzerland .
| | - Elia M Schneider
- Institute for Chemical and Bioengineering , ETH Zurich , Vladimir-Prelog-Weg 1 , 8093 Zurich , Switzerland .
| | - Lyndsey Hendriks
- Laboratory of Inorganic Chemistry , ETH Zurich , Vladimir-Prelog-Weg 1 , 8093 Zurich , Switzerland
| | - Antoine F Herzog
- Institute for Chemical and Bioengineering , ETH Zurich , Vladimir-Prelog-Weg 1 , 8093 Zurich , Switzerland .
| | - Martin Zeltner
- Institute for Chemical and Bioengineering , ETH Zurich , Vladimir-Prelog-Weg 1 , 8093 Zurich , Switzerland .
| | - Detlef Günther
- Laboratory of Inorganic Chemistry , ETH Zurich , Vladimir-Prelog-Weg 1 , 8093 Zurich , Switzerland
| | - Wendelin J Stark
- Institute for Chemical and Bioengineering , ETH Zurich , Vladimir-Prelog-Weg 1 , 8093 Zurich , Switzerland .
| |
Collapse
|