1
|
Moutaharrik S, Palugan L, Cerea M, Meroni G, Casagni E, Roda G, Martino PA, Gazzaniga A, Maroni A, Foppoli A. Colon Drug Delivery Systems Based on Swellable and Microbially Degradable High-Methoxyl Pectin: Coating Process and In Vitro Performance. Pharmaceutics 2024; 16:508. [PMID: 38675167 PMCID: PMC11054370 DOI: 10.3390/pharmaceutics16040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Oral colon delivery systems based on a dual targeting strategy, harnessing time- and microbiota-dependent release mechanisms, were designed in the form of a drug-containing core, a swellable/biodegradable polysaccharide inner layer and a gastroresistant outer film. High-methoxyl pectin was employed as the functional coating polymer and was applied by spray-coating or powder-layering. Stratification of pectin powder required the use of low-viscosity hydroxypropyl methylcellulose in water solution as the binder. These coatings exhibited rough surfaces and higher thicknesses than the spray-coated ones. Using a finer powder fraction improved the process outcome, coating quality and inherent barrier properties in aqueous fluids. Pulsatile release profiles and reproducible lag phases of the pursued duration were obtained from systems manufactured by both techniques. This performance was confirmed by double-coated systems, provided with a Kollicoat® MAE outer film that yielded resistance in the acidic stage of the test. Moreover, HM pectin-based coatings manufactured by powder-layering, tested in the presence of bacteria from a Crohn's disease patient, showed earlier release, supporting the role of microbial degradation as a triggering mechanism at the target site. The overall results highlighted viable coating options and in vitro release characteristics, sparking new interest in naturally occurring pectin as a coating agent for oral colon delivery.
Collapse
Affiliation(s)
- Saliha Moutaharrik
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Luca Palugan
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Matteo Cerea
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Gabriele Meroni
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Eleonora Casagni
- Department of Pharmaceutical Sciences, Section of Medicinal Chemistry “P. Pratesi”, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Section of Medicinal Chemistry “P. Pratesi”, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Piera Anna Martino
- Department of Biomedical, Surgical and Dental Sciences, One Health Unit, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Andrea Gazzaniga
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Alessandra Maroni
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| | - Anastasia Foppoli
- Department of Pharmaceutical Sciences, Section of Pharmaceutical Technology and Legislation “M.E. Sangalli”, University of Milan, Via G. Colombo 71, 20133 Milan, Italy
| |
Collapse
|
2
|
Wanasawas P, Mitrevej A, Sinchaipanid N. Influence of In Situ Calcium Pectinate Coating on Metoprolol Tartrate Pellets for Controlled Release and Colon-Specific Drug Delivery. Pharmaceutics 2022; 14:1061. [PMID: 35631647 PMCID: PMC9144396 DOI: 10.3390/pharmaceutics14051061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
In situ calcium pectinate-coated pellets were proposed by applying an alternate coating method to drug-layered pellets to achieve colon-specific drug delivery. Solution layering of metroprolol tartrate, a water-soluble model drug, on inert core pellets was achieved using a centrifugal granulator followed by successive alternate coating with pectin and calcium chloride layers using a fluidized bed bottom spray coater. The effect of the coating sequence on the drug release was studied in phosphate buffer pH 7.4 and 6.0. These test conditions were used to mimic the physiological environments in the distal small intestine and proximal colon, respectively. The results showed that the in situ calcium pectinate layer was successfully generated from the alternate coating of pectin and calcium layers after hydration to form gelation, which was able to control the drug release. The coating sequence played an important role in the drug release. The outermost pectin layer tended to retard the drug release whilst the outermost calcium layer accelerated the release regardless of the number of coating layers. These findings indicate that the release behavior followed the Higuchi model, with the drug release from the coated pellets described by a diffusion control mechanism. It is concluded that the success of the in situ calcium pectinate-coated pellets in controlling the drug release is due to the coating of the outermost layer with pectin and the maintenance of the optimum ratio of calcium to pectin upon hydration.
Collapse
Affiliation(s)
| | | | - Nuttanan Sinchaipanid
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (P.W.)
| |
Collapse
|
3
|
Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, Rascón-Chu A. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules 2018; 23:E942. [PMID: 29670040 PMCID: PMC6017442 DOI: 10.3390/molecules23040942] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 12/03/2022] Open
Abstract
Pectins are plant cell wall natural heteropolysaccharides composed mainly of α-1-4 d-galacturonic acid units, which may or may not be methyl esterified, possesses neutral sugars branching that harbor functional moieties. Physicochemical features as pH, temperature, ions concentration, and cosolute presence, affect directly the extraction yield and gelling capacity of pectins. The chemical and structural features of this polysaccharide enables its interaction with a wide range of molecules, a property that scientists profit from to form new composite matrices for target/controlled delivery of therapeutic molecules, genes or cells. Considered a prebiotic dietary fiber, pectins meetmany regulations easily, regarding health applications within the pharmaceutical industry as a raw material and as an agent for the prevention of cancer. Thus, this review lists many emergent pectin-based composite materials which will probably palliate the impact of obesity, diabetes and heart disease, aid to forestall actual epidemics, expand the ken of food additives and food products design.
Collapse
Affiliation(s)
- Claudia Lara-Espinoza
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Elizabeth Carvajal-Millán
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - René Balandrán-Quintana
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Yolanda López-Franco
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Agustín Rascón-Chu
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
4
|
Penhasi A. Preparation and characterization of in-situ ionic cross-linked pectin films: II. Biodegradation and drug diffusion. Carbohydr Polym 2017; 157:651-659. [DOI: 10.1016/j.carbpol.2016.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 11/29/2022]
|
5
|
Cerciello A, Auriemma G, Del Gaudio P, Sansone F, Aquino RP, Russo P. A novel core–shell chronotherapeutic system for the oral administration of ketoprofen. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|