1
|
Ciprofloxacin HCl-loaded Albumin Nanoparticles for the Treatment of Recurrent Urinary Tract Infections: Preparation, Optimization, and Evaluation of Antibacterial Activity. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
2
|
Carboplatin and decitabine loaded lipid-coated albumin nanoparticles for an efficient treatment of platinum-resistant ovarian cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Yang E, Jung HS, Chang PS. Preparation and Characterization of pH-Sensitive Capsosomes for Oral Delivery of Therapeutic Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9294-9300. [PMID: 35863074 DOI: 10.1021/acs.langmuir.2c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oral administration of therapeutic proteins is very challenging because of gastrointestinal instability and decomposition. In this study, we developed a system for oral delivery of superoxide dismutase (SOD) as one of the therapeutic proteins. SOD-loaded capsosomes (SOD-C) were formed by the assembly of chitosan-coated solid lipid nanoparticles and SOD-loaded liposomes (SOD-L). Unlike raw SOD activity decreases to 19.41% in SGF and 13.70% in SIF, the SOD-C in SGF (89.30%) condition retained its initial catalytic activity and decreased but exhibited a three-fold higher raw SOD activity even after incubation in SIF (41.63%). TEM analysis indicated that after intestinal digestion, the residual amount of intact liposomes affected the higher catalytic activity of SOD-C compared to raw SOD and SOD-L. Based on these results, significantly higher cellular uptake of SOD-C was observed compared to raw SOD. Also, SOD-C remarkably suppressed the cellular malondialdehyde (MDA) concentration by maintaining the antioxidative capacity of SOD to remove MDA produced in the oxidative stress-induced cells, thereby contributing to a significant five-fold difference with SOD-R (p < 0.05). This delivery system can facilitate the oral application of other therapeutic proteins, improving gastrointestinal stability.
Collapse
Affiliation(s)
- Eunhye Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Sup Jung
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Sengel-Turk CT, Alcigir ME, Ekim O, Bakar-Ates F, Hascicek C. Clinicopathological and immunohistochemical evaluation of lonidamine-entrapped lipid-polymer hybrid nanoparticles in treatment of benign prostatic hyperplasia: An experimental rat model. Eur J Pharm Biopharm 2020; 157:211-220. [PMID: 33129926 DOI: 10.1016/j.ejpb.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/30/2020] [Accepted: 10/25/2020] [Indexed: 11/25/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a progressive proliferative disease, the incidence of which is constantly increasing due to aging of population. In this research, a hexokinase-II enzyme inhibiting agent, lonidamine - the use of which is limited in BPH treatment due to high hepatic toxicity observed after three months of treatment - was selected as an active agent, based on its mechanism of action in treating BPH. The aim of this study was to evaluate in vivo therapeutic efficacy and hepatic toxicity of lipid-polymer hybrid nanoparticles of lonidamine in a rat BPH model created in rat prostates. After local injections of hybrid nanoparticles of lonidamine were administered to the rat prostates, hyperplasic structures of prostates were evaluated in terms of prostatic index values, immunohistochemical evaluations, and histopathological findings. Liver blood enzyme values were also determined to specify hepatic toxicity. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) reaction and histopathological methods to determine intravital degenerative destruction in liver. Through this study, lonidamine-loaded hybrid nanoparticles were found to reduce the hepatic toxicity and increase therapeutic efficiency of lonidamine. Therefore, lonidamine-entrapped hybrid nanoparticles may provide a promising, and very safe, drug delivery strategy in the treatment of BPH.
Collapse
Affiliation(s)
- Ceyda Tuba Sengel-Turk
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey.
| | - Mehmet Eray Alcigir
- Kirikkale University, Faculty of Veterinary Medicine, Department of Pathology, Kirikkale, Turkey
| | - Okan Ekim
- Ankara University, Faculty of Veterinary Medicine, Department of Anatomy, Ankara, Turkey
| | - Filiz Bakar-Ates
- Ankara University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey
| | - Canan Hascicek
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| |
Collapse
|
5
|
Encapsulation of cucurbitacin B into lipid polymer hybrid nanocarriers induced apoptosis of MDAMB231 cells through PARP cleavage. Int J Pharm 2020; 586:119565. [DOI: 10.1016/j.ijpharm.2020.119565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022]
|
6
|
Drug delivery systems based on nanoparticles and related nanostructures. Eur J Pharm Sci 2020; 151:105412. [DOI: 10.1016/j.ejps.2020.105412] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
|
7
|
Esim O, Gumustas M, Hascicek C, Ozkan SA. A novel stability-indicating analytical method development for simultaneous determination of carboplatin and decitabine from nanoparticles. J Sep Sci 2020; 43:3491-3498. [PMID: 32644279 DOI: 10.1002/jssc.202000320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 07/04/2020] [Indexed: 11/11/2022]
Abstract
Drug resistance is one of the main problems of cancer treatment. For this reason, combination therapy is commonly used for years. The combination of a chemotherapeutic, carboplatin, and the epigenetic drug decitabine is a new approach to modulate drug resistance. Nanoparticulate systems can overcome the drawbacks associated with the drug combinations. An analytical method that can detect and quantify carboplatin and decitabine which is encapsulated into the nanoparticles is necessary for nanoparticle development. In the literature, there is no analytical method in which carboplatin and decitabine are determined simultaneously. The primary purpose of this study is to develop and validate a novel, and stability-indicating high-performance liquid chromatography method for simultaneous determination of carboplatin and decitabine in pharmaceutical preparations in addition to developing the first nanoformulation for this drug combination. Therefore, various experimental parameters were optimized. The chromatographic separation was achieved using an XSelect® CSH C18 (250 × 4.6 mm I.D., 5 µm) column and a mobile phase consisting of methanol:water (containing 0.1% phosphoric acid) (3:97, v/v). The mobile phase pH was adjusted to 7.0 with 5 M NaOH. The developed method was successfully applied for the simultaneous determination and quantification of carboplatin and decitabine co-encapsulated in nanoparticles and released into in vitro dissolution medium.
Collapse
Affiliation(s)
- Ozge Esim
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Mehmet Gumustas
- Institute of Forensic Sciences, Department of Forensic Toxicology, Ankara University, Ankara, Turkey
| | - Canan Hascicek
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Gibbens-Bandala B, Morales-Avila E, Ferro-Flores G, Santos-Cuevas C, Meléndez-Alafort L, Trujillo-Nolasco M, Ocampo-García B. 177Lu-Bombesin-PLGA (paclitaxel): A targeted controlled-release nanomedicine for bimodal therapy of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110043. [PMID: 31546458 DOI: 10.1016/j.msec.2019.110043] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/26/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
The gastrin-releasing peptide receptor (GRPr) is overexpressed in >75% of breast cancers. 177Lu-Bombesin (177Lu-BN) has demonstrated the ability to target GRPr and facilitate efficient delivery of therapeutic radiation doses to malignant cells. Poly(d,l‑lactide‑co‑glycolide) acid (PLGA) nanoparticles can work as smart drug controlled-release systems activated through pH changes. Considering that paclitaxel (PTX) is a first-line drug for cancer treatment, this work aimed to synthesize and chemically characterize a novel polymeric PTX-loaded nanosystem with grafted 177Lu-BN and to evaluate its performance as a targeted controlled-release nanomedicine for concomitant radiotherapy and chemotherapy of breast cancer. PLGA(PTX) nanoparticles were synthesized using the single emulsification-solvent evaporation method with PVA as a stabilizer in the presence of PTX. Thereafter, the activation of PLGA carboxylic groups for BN attachment through the Lys1-amine group was performed. Results of the chemical characterization by FT-IR, DLS, HPLC and SEM/TEM demonstrated the successful synthesis of BN-PLGA(PTX) with a hydrodynamic diameter of 163.54 ± 33.25 nm. The entrapment efficiency of paclitaxel was 92.8 ± 3.6%. The nanosystem showed an adequate controlled release of the anticancer drug, which increased significantly due to the pH change from neutral (pH = 7.4) to acidic conditions (pH = 5.3). After labeling with 177Lu and purification by ultrafiltration, 177Lu-BN-PLGA(PTX) was obtained with a radiochemical purity of 99 ± 1%. In vitro and in vivo studies using MDA-MB-231 breast cancer cells (GRPr-positive) demonstrated a 177Lu-BN-PLGA(PTX) specific uptake and a significantly higher cytotoxic effect for the radiolabeled nanosystem than the unlabeled BN-PLGA(PTX) nanoparticles. Using a pulmonary micrometastasis MDA-MB-231 model, the added value of 177Lu-BN-PLGA(PTX) for tumor imaging was confirmed. The 177Lu-BN-PLGA(PTX) nanomedicine is suitable as a targeted paclitaxel delivery system with concomitant radiotherapeutic effect for the treatment of GRPr-positive breast cancer.
Collapse
Affiliation(s)
- Brenda Gibbens-Bandala
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México 52750, Mexico; Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México 50180, Mexico
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México 50180, Mexico
| | - Guillermina Ferro-Flores
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México 52750, Mexico
| | - Clara Santos-Cuevas
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México 52750, Mexico
| | | | - Maydelid Trujillo-Nolasco
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México 52750, Mexico; Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca, Estado de México 50180, Mexico
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac, Estado de México 52750, Mexico.
| |
Collapse
|
9
|
Li Z, Zhang Y, Zhang K, Wu Z, Feng N. Biotinylated-lipid bilayer coated mesoporous silica nanoparticles for improving the bioavailability and anti-leukaemia activity of Tanshinone IIA. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:578-587. [DOI: 10.1080/21691401.2018.1431651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhe Li
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Kai Zhang
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Nianping Feng
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
10
|
Hascicek C, Sengel-Turk C, Gumustas M, Ozkan A, Bakar F, Das-Evcimen N, Savaser A, Ozkan Y. Fulvestrant-loaded polymer-based nanoparticles for local drug delivery: Preparation and in vitro characterization. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Sengel-Turk CT, Hascicek C. Design of lipid-polymer hybrid nanoparticles for therapy of BPH: Part I. Formulation optimization using a design of experiment approach. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Sengel-Turk CT, Hascicek C, Bakar F, Simsek E. Comparative Evaluation of Nimesulide-Loaded Nanoparticles for Anticancer Activity Against Breast Cancer Cells. AAPS PharmSciTech 2017; 18:393-403. [PMID: 27007742 DOI: 10.1208/s12249-016-0514-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/09/2016] [Indexed: 02/03/2023] Open
Abstract
Recent clinical and epidemiological researches have declared that non-steroidal anti-inflammatory agents may display as antineoplastic agents and indicate pro-apoptotic and antiproliferative effects on cancer cells. The major purpose of this research was to develop a novel poly(ethyleneglycol)-block-poly(ε-caprolactone) (PEG-b-PCL) nano-sized particles encapsulated with nimesulide (NMS), a selective COX-2 inhibitor, and to evaluate its anticancer activity against MCF-7 breast cancer cells. NMS-encapsulated PEG-b-PCL nanoparticles were fabricated using three different production techniques: (i) by emulsion-solvent evaporation using a high shear homogenizer, (ii) by emulsion-solvent evaporation using an ultrasonicator, and (iii) by nanoprecipitation. Nanoparticles were evaluated with respect to the entrapment efficiency, size characteristics, drug release rates, thermal behavior, cell viability assays, and apoptosis. The resulting nanoparticles were found to be spherical shapes with negative surface charges. The average diameter of all nanoparticles ranged between 148.5 and 307.2 nm. In vitro release profiles showed that all nanoparticles exhibited a biphasic release pattern. NMS-loaded PEG-b-PCL nanoparticles demonstrated significant anticancer activity against MCF-7 breast cancer cells in a dose-dependent manner, and the effects of nanoparticles on cell proliferation were significantly affected by the preparation techniques. The nanoparticles developed in this work displayed higher potential for the NMS delivery against breast cancer treatment for the future.
Collapse
|
13
|
Wang J, Li D, Li T, Ding J, Liu J, Li B, Chen X. Gelatin Tight-Coated Poly(lactide- co-glycolide) Scaffold Incorporating rhBMP-2 for Bone Tissue Engineering. MATERIALS 2015; 8:1009-1026. [PMID: 28787985 PMCID: PMC5455445 DOI: 10.3390/ma8031009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 01/05/2023]
Abstract
Surface coating is the simplest surface modification. However, bioactive molecules can not spread well on the commonly used polylactone-type skeletons; thus, the surface coatings of biomolecules are typically unstable due to the weak interaction between the polymer and the bioactive molecules. In this study, a special type of poly(lactide-co-glycolide) (PLGA)-based scaffold with a loosened skeleton was fabricated by phase separation, which allowed gelatin molecules to more readily diffuse throughout the structure. In this application, gelatin modified both the internal substrate and external surface. After cross-linking with glutaraldehyde, the surface layer gelatin was tightly bound to the diffused gelatin, thereby preventing the surface layer gelatin coating from falling off within 14 days. After gelatin modification, PLGA scaffold demonstrated enhanced hydrophilicity and improved mechanical properties (i.e., increased compression strength and elastic modulus) in dry and wet states. Furthermore, a sustained release profile of recombinant human bone morphogenetic protein-2 (rhBMP-2) was achieved in the coated scaffold. The coated scaffold also supported the in vitro attachment, proliferation, and osteogenesis of rabbit bone mesenchymal stem cells (BMSCs), indicating the bioactivity of rhBMP-2. These results collectively demonstrate that the cross-linked-gelatin-coated porous PLGA scaffold incorporating bioactive molecules is a promising candidate for bone tissue regeneration.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300070, China.
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Dongsong Li
- Department of Orthopaedic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
| | - Tianyi Li
- Orthopedics Dept. 2, Heilongjiang Provincial Corps Hospital of Chinese People's Armed Police Forces, Harbin 150076, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jianguo Liu
- Department of Orthopaedic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
| | - Baosheng Li
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300070, China.
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|