1
|
Mohapatra D, Kumar DN, Shreya S, Pandey V, Dubey PK, Agrawal AK, Sahu AN. Quality by design-based development and optimization of fourth-generation ternary solid dispersion of standardized Piper longum extract for melanoma therapy. Drug Deliv Transl Res 2023; 13:3094-3131. [PMID: 37294426 DOI: 10.1007/s13346-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
The study aimed to enhance the solubility, dissolution, and oral bioavailability of standardized Piper longum fruits ethanolic extract (PLFEE) via fourth-generation ternary solid dispersion (SD) for melanoma therapy. With the use of solvent evaporation method, the standardized PLFEE was formulated into SD, optimized using Box-Wilson's central composite design (CCD), and evaluated for pharmaceutical performance and in vivo anticancer activity against melanoma (B16F10)-bearing C57BL/6 mice. The optimized SD showed good accelerated stability, high yield, drug content, and content uniformity for bioactive marker piperine (PIP). The X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized light microscopy (PLM), and selected area electron diffraction (SAED) analysis revealed its amorphous nature. The attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and high-performance thin layer chromatography (HPTLC) revealed the compatibility of excipients with the PLFEE. The contact angle measurement and in vitro dissolution study revealed excellent wetting of SD and improved dissolution profile as compared to the plain PLFEE. The in vivo oral bioavailability of SD reflected a significant (p < 0.05) improvement in bioavailability (Frel = 188.765%) as compared to plain extract. The in vivo tumor regression study revealed the improved therapeutic activity of SD as compared to plain PLFEE. Further, the SD also improved the anticancer activity of dacarbazine (DTIC) as an adjuvant therapy. The overall result revealed the potential of developed SD for melanoma therapy either alone or as an adjuvant therapy with DTIC.
Collapse
Affiliation(s)
- Debadatta Mohapatra
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Dulla Naveen Kumar
- Nanomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Singh Shreya
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Vivek Pandey
- Centre for Genetics Disorders, Institute of Science (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Pawan K Dubey
- Centre for Genetics Disorders, Institute of Science (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Ashish Kumar Agrawal
- Nanomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Alakh N Sahu
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Uttar Pradesh, Varanasi, 221005, India.
| |
Collapse
|
2
|
Current Trends on Solid Dispersions: Past, Present, and Future. Adv Pharmacol Pharm Sci 2022; 2022:5916013. [PMID: 36317015 PMCID: PMC9617737 DOI: 10.1155/2022/5916013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
Solid dispersions have achieved significant interest as an effective means of enhancing the dissolution rate and thus the bioavailability of a range of weakly water-soluble drugs. Solid dispersions of weakly water-soluble drugs with water-soluble carriers have lowered the frequency of these problems and improved dissolution. Solid dispersion is a solubilization technology emphasizing mainly on, drug-polymer two-component systems in which drug dispersion and its stabilization is the key to formulation development. Therefore, this technology is recognized as an exceptionally useful means of improving the dissolution properties of poorly water-soluble drugs and in the latest years, a big deal of understanding has been accumulated about solid dispersion, however, their commercial application is limited. In this review article, emphasis is placed on solubility, BCS classification, and carriers. Moreover, this article presents the diverse preparation techniques for solid dispersion and gathers some of the recent technological transfers. The different types of solid dispersions based on the carrier used and molecular arrangement were underlined. Additionally, it summarizes the mechanisms, the methods of preparing solid dispersions, and the marketed drugs that are available using solid dispersion approaches.
Collapse
|
3
|
Preparation and Evaluation of Silymarin-Loaded Solid Eutectic for Enhanced Anti-Inflammatory, Hepatoprotective Effect: In Vitro- In Vivo Prospect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1818538. [PMID: 34804361 PMCID: PMC8598371 DOI: 10.1155/2021/1818538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Solubility of phytochemicals is a major concern for drug delivery, permeability, and their biological response. However, advancements in the novel formulation technologies have been helping to overcome these challenges. The applications of these newer technologies are easy for commercialization and high therapeutic outcomes compared to conventional formulations. Considering these facts, the present study is aimed to prepare a silymarin-loaded eutectic mixture with three different ratios of Polyvinylpyrrolidone K30 (PVP K30) and evaluating their anti-inflammatory, and hepatoprotective effects. The preliminary phytochemical and characterization of silymarin, physical mixture, and solid dispersions suggested and successfully confirmed the formation of solid dispersion of silymarin with PVP K30. It was found that the solubility of silymarin was increased by 5-fold compared to pure silymarin. Moreover, the in vitro dissolution displayed that 83% of silymarin released within 2 h with 2.8-fold increase in dissolution rate compared to pure silymarin. Also, the in vivo study suggested that the formulation significantly reduced the carbon tetrachloride- (0.8620 ± 0.05034∗∗ for 1 : 3 ratio), paracetamol- (0.7300 ± 0.01517∗∗ for 1 : 3 ratio), and ethanol- (0.8100 ± 0.04037∗∗ for 1 : 3 ratio) induced hepatotoxicity in rats. Silymarin solid dispersion was prepared using homogenization methods that have prominent anti-inflammatory effect (0.6520 ± 0.008602∗∗ with 8.33%) in carrageenan-induced rat paw model.
Collapse
|
4
|
Therapeutic Applications of Solid Dispersions for Drugs and New Molecules: In Vitro and In Vivo Activities. Pharmaceutics 2020; 12:pharmaceutics12100933. [PMID: 33007806 PMCID: PMC7601702 DOI: 10.3390/pharmaceutics12100933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/22/2022] Open
Abstract
This review aims to provide an overview of studies that address the use, in therapeutic applications, of solid dispersions (SDs) with biological activities in vitro and/or in vivo mainly made up of polymeric matrices, as well as to evaluate the bioactive activity of their constituents. This bibliographic survey shows that the development of solid dispersions provides benefits in the physicochemical properties of bioactive compounds, which lead to an increase in their biological potential. However, despite the reports found on solid dispersions, there is still a need for biological assay-based studies, mainly in vivo, to assist in the investigation and to devise new applications. Therefore, studies based on such an approach are of great importance to enhance and extend the use of solid dispersions in the most diverse therapeutic applications.
Collapse
|
5
|
Ibrahim AH, Rosqvist E, Smått JH, Ibrahim HM, Ismael HR, Afouna MI, Samy AM, Rosenholm JM. Formulation and optimization of lyophilized nanosuspension tablets to improve the physicochemical properties and provide immediate release of silymarin. Int J Pharm 2019; 563:217-227. [DOI: 10.1016/j.ijpharm.2019.03.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 11/28/2022]
|
6
|
Momenkiaei F, Raofie F. Preparation of silybum marianum seeds extract nanoparticles by supercritical solution expansion. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2018.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Thakur A, Thipparaboina R, Kumar D, Sai Gouthami K, Shastri NR. Crystal engineered albendazole with improved dissolution and material attributes. CrystEngComm 2016. [DOI: 10.1039/c5ce02306h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|