Gao A, Tang CX, He XW, Yin XB. Electrochemiluminescent lead biosensor based on GR-5 lead-dependent DNAzyme for Ru(phen)3(2+) intercalation and lead recognition.
Analyst 2012;
138:263-8. [PMID:
23120751 DOI:
10.1039/c2an36398d]
[Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An electrochemiluminescent (ECL) lead biosensor was developed based on GR-5 lead-dependent DNAzyme for lead recognition and intercalated ruthenium tris(1,10-phenanthroline) (Ru(phen)(3)(2+)) as the ECL probe. The thiol-modified substrate was first immobilized on the surface of the gold electrode via gold-sulfur self-assembly. Subsequently, the hybridization of DNAzyme and its substrate and the automatic intercalation of Ru(phen)(3)(2+) proceeded. Intercalated Ru(phen)(3)(2+) can transfer electrons through double-stranded DNA to the electrode and its electrochemiluminescence was excited with a potential step using tripropylamine as the coreactant. In the presence of lead, the substrate cleaves at the scissile ribo-adenine into two fragments. The dissociation of DNAzyme occurs, leading to the releasing of intercalated Ru(phen)(3)(2+) accompanied by a decrease in the intensity of electrochemiluminescence. A quantity of lead can be calculated from this decrease. The biosensor is highly sensitive and specific, along with an ultra-low limit of detection of 0.9 pM and a dynamic range from 2 to 1000 pM. It enables analysis of trace amounts of lead in serum samples. The combination of the intercalated-Ru(phen)(3)(2+) ECL probe and the cofactor-dependent DNAzyme may push the performance of cofactor-sensing tactics to the extreme.
Collapse