1
|
Zhang Y, Guo J, VanNatta P, Jiang Y, Phipps J, Roknuzzaman R, Rabaâ H, Tan K, AlShahrani T, Ma S. Metal-Free Heterogeneous Asymmetric Hydrogenation of Olefins Promoted by Chiral Frustrated Lewis Pair Framework. J Am Chem Soc 2024; 146:979-987. [PMID: 38117691 DOI: 10.1021/jacs.3c11607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The development of metal-free and recyclable catalysts for significant yet challenging transformations of naturally abundant feedstocks has long been sought after. In this work, we contribute a general strategy of combining the rationally designed crystalline covalent organic framework (COF) with a newly developed chiral frustrated Lewis pair (CFLP) to afford chiral frustrated Lewis pair framework (CFLPF), which can efficiently promote the asymmetric olefin hydrogenation in a heterogeneous manner, outperforming the homogeneous CFLP counterpart. Notably, the metal-free CFLPF exhibits superior activity/enantioselectivity in addition to excellent stability/recyclability. A series of in situ spectroscopic studies, kinetic isotope effect measurements, and density-functional theory computational calculations were also performed to gain an insightful understanding of the superior asymmetric hydrogenation catalysis performances of CFLPF. Our work not only increases the versatility of catalysts for asymmetric catalysis but also broadens the reactivity of porous organic materials with the addition of frustrated Lewis pair (FLP) chemistry, thereby suggesting a new approach for practical and substantial transformations through the advancement of novel catalysts from both concept and design perspectives.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, China
| | - Peter VanNatta
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Yao Jiang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Joshua Phipps
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Roknuzzaman Roknuzzaman
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Hassan Rabaâ
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
- Department of Chemistry, Ibn Tofail University, ESCTM, Kenitra 14000, Morocco
| | - Kui Tan
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| | - Thamraa AlShahrani
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, Texas 76201, United States
| |
Collapse
|
2
|
Gunasekar R, Goodyear RL, Silvestri IP, Xiao J. Recent Developments in Enantio- and Diastereoselective Hydrogenation of N-Heteroaromatic Compounds. Org Biomol Chem 2022; 20:1794-1827. [DOI: 10.1039/d1ob02331d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantioselective and diastereoselective hydrogenation of N-heteroaromatic compounds is an efficient strategy to access chirally enriched cyclic heterocycles, which often possess highly bio-active properties. This strategy, however, has only been...
Collapse
|
3
|
Deng L, Liu X, Song S. Recent advances in the asymmetric reduction of imines by recycled catalyst systems. Org Chem Front 2022. [DOI: 10.1039/d1qo01526e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances relating to the asymmetric reduction of imines to afford optically active amines via recyclable catalyst systems are reviewed.
Collapse
Affiliation(s)
- Lidan Deng
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, Department of Chemical Engineering Chongqing Technology and Business University, Chongqing 400067, China
| | - Xingwang Liu
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, Department of Chemical Engineering Chongqing Technology and Business University, Chongqing 400067, China
| | - Shihua Song
- Porton Pharma Solutions Ltd, Fangzheng Avenue, Shuitu, BeiBei District, Chongqing 400067, China
| |
Collapse
|
4
|
El‐Shahat M. Advances in the reduction of quinolines to 1,2,3,4‐tetrahydroquinolines. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mahmoud El‐Shahat
- Photochemistry Department Chemical Industries Research Institute, National Research Centre, Scopus affiliation ID 60014618 Giza Egypt
| |
Collapse
|
5
|
Tao L, Ren Y, Li C, Li H, Liu J, Yang Q. Water‐Promoted Heterogeneous Asymmetric Hydrogenation of Quinolines over Ordered Macroporous Poly(ionic liquid) Catalyst. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lin Tao
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China (QY
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yiqi Ren
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China (QY
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunzhi Li
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China (QY
- University of Chinese Academy of Sciences Beijing 100049 China
| | - He Li
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China (QY
| | - Jiali Liu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China (QY
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qihua Yang
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 China (QY
| |
Collapse
|
6
|
Marumoto M, Sotani T, Miyagi Y, Yajima T, Sano N, Sanda F. Synthesis of Platinum-Containing Conjugated Polymers Having QuinoxP* and Bipyridine Ligands. Chirality Transfer from the Phosphine Ligand to the Polymer Backbone. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manabu Marumoto
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Taichi Sotani
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yu Miyagi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tatsuo Yajima
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Natsuhiro Sano
- R&D Division, Nippon Chemical Industrial Co., Ltd., 9-11-1 Kameido, Koto-ku, Tokyo 136-8515, Japan
| | - Fumio Sanda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
7
|
Cui YY, Yang CX, Yan XP. Thiol-yne Click Post-Modification for the Synthesis of Chiral Microporous Organic Networks for Chiral Gas Chromatography. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4954-4961. [PMID: 31894954 DOI: 10.1021/acsami.9b22023] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microporous organic networks (MONs) have shown great potential in diverse domains recently. However, the application of MONs in chiral separation or catalysis has been largely lagged due to the lack of chiral MONs and the challenge to synthesize chiral MONs. Here we report a facile thiol-yne click strategy to post-synthesize chiral MONs for the first application in chiral gas chromatography. Three chiral MONs with different chiral centers were rationally designed and synthesized to fabricate their capillary columns for gas chromatographic resolution of various chiral compounds with better resolution than three commercial chiral capillary columns. These results show the great potential of the thiol-yne click strategy for constructing newly chiral MONs and their application in chiral separation.
Collapse
Affiliation(s)
- Yuan-Yuan Cui
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Cheng-Xiong Yang
- College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
8
|
Tao L, Ren Y, Li C, Li H, Chen X, Liu L, Yang Q. Efficient Asymmetric Hydrogenation of Quinolines over Chiral Porous Polymers Integrated with Substrate Activation Sites. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Tao
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqi Ren
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhi Li
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Li
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xuelian Chen
- Department of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Lina Liu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qihua Yang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Altava B, Burguete MI, García-Verdugo E, Luis SV. Chiral catalysts immobilized on achiral polymers: effect of the polymer support on the performance of the catalyst. Chem Soc Rev 2018; 47:2722-2771. [DOI: 10.1039/c7cs00734e] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Achiral polymeric supports can have important positive effects on the activity, stability and selectivity of supported chiral catalysts.
Collapse
Affiliation(s)
- Belén Altava
- Department of Inorganic and Organic Chemistry
- University Jaume I
- Castellón
- Spain
| | - M. Isabel Burguete
- Department of Inorganic and Organic Chemistry
- University Jaume I
- Castellón
- Spain
| | | | - Santiago V. Luis
- Department of Inorganic and Organic Chemistry
- University Jaume I
- Castellón
- Spain
| |
Collapse
|
10
|
Wang T, Lyu Y, Xiong K, Wang W, Zhang H, Zhan Z, Jiang Z, Ding Y. Chiral BINAP-based hierarchical porous polymers as platforms for efficient heterogeneous asymmetric catalysis. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62826-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wang T, Wang W, Lyu Y, Xiong K, Li C, Zhang H, Zhan Z, Jiang Z, Ding Y. Porous Rh/BINAP polymers as efficient heterogeneous catalysts for asymmetric hydroformylation of styrene: Enhanced enantioselectivity realized by flexible chiral nanopockets. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62790-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|