1
|
Hwang YJ, Park Y, Jeong W, Kim M, Lee H, An B, Lee Y, Jeong H, Kim G, Choi J, Ha DH. Morphology Control of Au-Ni Hybrid Nanoparticles: Exploring Heterostructures and Optical Tuning. Inorg Chem 2024; 63:11660-11666. [PMID: 38861724 DOI: 10.1021/acs.inorgchem.4c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Hybrid nanoparticles (NPs) have attracted considerable attention because of their ability to provide diverse properties by integrating the inherent properties of multiple components; however, synthetic strategies to control their morphology remain unexplored. In this study, a new method was used to control the morphology and optical properties of Au-Ni heterostructure (ANH) NPs. Unique morphological changes were observed by varying the Au/Ni precursor ratio from 2:1 to 1:4, exhibiting a shape transformation from dumbbell-like to quasi-spherical owing to the Ni NP size expansion, whereas the Au NP maintained their size. Moreover, increasing the Ni ratio induced plasmonic band broadening and wavelength redshift, resulting in color changes from red to navy and black. In terms of the structure, the atomic orientation of the crystallite showed that even a large lattice mismatch can result in heterojunctions at the NPs. In addition, the reaction aliquots uncovered heterogeneous nucleation and growth of ANH NPs in the colloidal system, demonstrating Ni reduction on the preformed Au NP owing to the reduction in potential gap. This study provides new insights into controlling the morphology of hybrid NPs using colloidal synthesis and the design of optimized materials for various applications.
Collapse
Affiliation(s)
- Yun Jae Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yoonsu Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Wooseok Jeong
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Minyoung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyeonseok Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Boeun An
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yeongbin Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Heesoo Jeong
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Gyuhyeon Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Duan W, Wang J, Peng X, Cao S, Shang J, Qiu Z, Lu X, Zeng J. Rational design of trimetallic AgPt-Fe 3O 4 nanozyme for catalyst poisoning-mediated CO colorimetric detection. Biosens Bioelectron 2023; 223:115022. [PMID: 36563527 DOI: 10.1016/j.bios.2022.115022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Carbon monoxide (CO) is not only a highly poisonous gas that brings great health risk, but also a significant signaling molecule in body. However, it is still challengeable for development of alternative colorimetric probes to traditional organic chromophores for simple, sensitive and convenient CO sensing. Here, for the first time, we rationally design a novel hydrophilic AgPt-Fe3O4 nanozyme with a unique heterodimeric nanostructure for colorimetric sensing of CO based on the excellent peroxidase-like catalytic activity as well as highly poisonous effect of CO on the nanozyme's catalytic activity. Both experimental evidence and theoretical calculations reveal the trimetallic AgPt-Fe3O4 nanozyme is susceptible to poisoning with the strongest affinity towards CO compared to individual Fe3O4 or Ag-Fe3O4, which is attributed to the adequate exposure of the active metallic sites and efficient interfacial synergy of unique heterodimeric nanostructure. Accordingly, a novel nanozyme-based colorimetric strategy is developed for CO detection with a low detection limit of 5.6 ppb in solution. Furthermore, the probe can be prepared as very convenient test strips and integrated with the portable smartphone platforms for detecting CO gas samples with a low detection limit of 8.9 ppm. Overall, our work proposes guidelines for the rational design of metallic heterogeneous nanostructure to expand the analytical application of nanozyme.
Collapse
Affiliation(s)
- Wei Duan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Jinling Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xiaomeng Peng
- China Tobacco Anhui Industrial Co, Ltd, Anhui, 230031, PR China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jingjing Shang
- Tobacco Quality Supervision and Test Station of Anhui, Anhui, 230071, PR China
| | - Zhiwei Qiu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
3
|
Ali Dheyab M, Abdul Aziz A, Jameel MS, Moradi Khaniabadi P. Recent Advances in Synthesis, Medical Applications and Challenges for Gold-Coated Iron Oxide: Comprehensive Study. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2147. [PMID: 34443977 PMCID: PMC8399645 DOI: 10.3390/nano11082147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023]
Abstract
Combining iron oxide nanoparticles (Fe3O4 NPs) and gold nanoparticles (Au NPs) in one nanostructure is a promising technique for various applications. Fe3O4 NPs have special supermagnetic attributes that allow them to be applied in different areas, and Au NPs stand out in biomaterials due to their oxidation resistance, chemical stability, and unique optical properties. Recent studies have generally defined the physicochemical properties of nanostructures without concentrating on a particular formation strategy. This detailed review provides a summary of the latest research on the formation strategy and applications of Fe3O4@Au. The diverse methods of synthesis of Fe3O4@Au NPs with different basic organic and inorganic improvements are introduced. The role and applicability of Au coating on the surface of Fe3O4 NPs schemes were explored. The 40 most relevant publications were identified and reviewed. The versatility of combining Fe3O4@Au NPs as an option for medical application is proven in catalysis, hyperthermia, biomedical imaging, drug delivery and protein separation.
Collapse
Affiliation(s)
- Mohammed Ali Dheyab
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Azlan Abdul Aziz
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Mahmood S. Jameel
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, P.O. Box 35, Al Khod, Muscat 123, Oman;
| |
Collapse
|
4
|
Liu Y, Xiao Z, Cao S, Li J, Piao L. Controllable synthesis of Au-TiO2 nanodumbbell photocatalysts with spatial redox region. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63477-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Gao Q, Xing Y, Peng M, Liu Y, Luo Z, Jin Y, Fan H, Li K, Chen C, Cui Y. Enhancement of Fe3
O4
/Au Composite Nanoparticles Catalyst in Oxidative Degradation of Methyl Orange Based on Synergistic Effect. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201700032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Qin Gao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi 710069 China
| | - Yan Xing
- School of Chemistry & Chemical Engineering; Yulin University; Yulin Shaanxi 719000 China
| | - Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi 710069 China
- National Engineering Research Center for Miniaturized Detection Systems; Xi'an Shaanxi 710069 China
| | - Yongshuai Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi 710069 China
| | - Zhiyi Luo
- National Engineering Research Center for Miniaturized Detection Systems; Xi'an Shaanxi 710069 China
| | - Yanyan Jin
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi 710069 China
- National Engineering Research Center for Miniaturized Detection Systems; Xi'an Shaanxi 710069 China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi 710069 China
| | - Kebin Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi 710069 China
| | - Chao Chen
- National Engineering Research Center for Miniaturized Detection Systems; Xi'an Shaanxi 710069 China
| | - Yali Cui
- National Engineering Research Center for Miniaturized Detection Systems; Xi'an Shaanxi 710069 China
| |
Collapse
|