1
|
Morales M, Rezayat M, García-González S, Mateo A, Jiménez-Piqué E. Ru-Ce 0.7Zr 0.3O 2-δ as an Anode Catalyst for the Internal Reforming of Dimethyl Ether in Solid Oxide Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:603. [PMID: 38607137 PMCID: PMC11013270 DOI: 10.3390/nano14070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
The development of direct dimethyl ether (DME) solid oxide fuel cells (SOFCs) has several drawbacks, due to the low catalytic activity and carbon deposition of conventional Ni-zirconia-based anodes. In the present study, the insertion of 2.0 wt.% Ru-Ce0.7Zr0.3O2-δ (ruthenium-zirconium-doped ceria, Ru-CZO) as an anode catalyst layer (ACL) is proposed to be a promising solution. For this purpose, the CZO powder was prepared by the sol-gel synthesis method, and subsequently, nanoparticles of Ru (1.0-2.0 wt.%) were synthesized by the impregnation method and calcination. The catalyst powder was characterized by BET-specific surface area, X-ray diffraction (XRD), field emission scanning electron microscopy with an energy-dispersive spectroscopy detector (FESEM-EDS), and transmission electron microscopy (TEM) techniques. Afterward, the catalytic activity of Ru-CZO catalyst was studied using DME partial oxidation. Finally, button anode-supported SOFCs with Ru-CZO ACL were prepared, depositing Ru-CZO onto the anode support and using an annealing process. The effect of ACL on the electrochemical performance of cells was investigated under a DME and air mixture at 750 °C. The results showed a high dispersion of Ru in the CZO solid solution, which provided a complete DME conversion and high yields of H2 and CO at 750 °C. As a result, 2.0 wt.% Ru-CZO ACL enhanced the cell performance by more than 20% at 750 °C. The post-test analysis of cells with ACL proved a remarkable resistance of Ru-CZO ACL to carbon deposition compared to the reference cell, evidencing the potential application of Ru-CZO as a catalyst as well as an ACL for direct DME SOFCs.
Collapse
Affiliation(s)
- Miguel Morales
- Structural Integrity and Materials Reliability Centre (CIEFMA), Department of Materials Science and Engineering, EEBE—Campus Diagonal Besòs, Universitat Politècnica de Catalunya—BarcelonaTech, C/Eduard Maristany, 16, 08019 Barcelona, Spain; (M.R.); (S.G.-G.); (A.M.); (E.J.-P.)
- Barcelona Research Center in Multiscale Science and Engineering, EEBE—Campus Diagonal Besòs, Universitat Politècnica de Catalunya—BarcelonaTech, C/Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Mohammad Rezayat
- Structural Integrity and Materials Reliability Centre (CIEFMA), Department of Materials Science and Engineering, EEBE—Campus Diagonal Besòs, Universitat Politècnica de Catalunya—BarcelonaTech, C/Eduard Maristany, 16, 08019 Barcelona, Spain; (M.R.); (S.G.-G.); (A.M.); (E.J.-P.)
- Barcelona Research Center in Multiscale Science and Engineering, EEBE—Campus Diagonal Besòs, Universitat Politècnica de Catalunya—BarcelonaTech, C/Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Sandra García-González
- Structural Integrity and Materials Reliability Centre (CIEFMA), Department of Materials Science and Engineering, EEBE—Campus Diagonal Besòs, Universitat Politècnica de Catalunya—BarcelonaTech, C/Eduard Maristany, 16, 08019 Barcelona, Spain; (M.R.); (S.G.-G.); (A.M.); (E.J.-P.)
- Barcelona Research Center in Multiscale Science and Engineering, EEBE—Campus Diagonal Besòs, Universitat Politècnica de Catalunya—BarcelonaTech, C/Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Antonio Mateo
- Structural Integrity and Materials Reliability Centre (CIEFMA), Department of Materials Science and Engineering, EEBE—Campus Diagonal Besòs, Universitat Politècnica de Catalunya—BarcelonaTech, C/Eduard Maristany, 16, 08019 Barcelona, Spain; (M.R.); (S.G.-G.); (A.M.); (E.J.-P.)
- Barcelona Research Center in Multiscale Science and Engineering, EEBE—Campus Diagonal Besòs, Universitat Politècnica de Catalunya—BarcelonaTech, C/Eduard Maristany, 16, 08019 Barcelona, Spain
| | - Emilio Jiménez-Piqué
- Structural Integrity and Materials Reliability Centre (CIEFMA), Department of Materials Science and Engineering, EEBE—Campus Diagonal Besòs, Universitat Politècnica de Catalunya—BarcelonaTech, C/Eduard Maristany, 16, 08019 Barcelona, Spain; (M.R.); (S.G.-G.); (A.M.); (E.J.-P.)
- Barcelona Research Center in Multiscale Science and Engineering, EEBE—Campus Diagonal Besòs, Universitat Politècnica de Catalunya—BarcelonaTech, C/Eduard Maristany, 16, 08019 Barcelona, Spain
| |
Collapse
|
2
|
Yan X, Zhao L, Huang Y, Zhang J, Jiang S. Three-dimensional porous CuO-modified CeO 2-Al 2O 3 catalysts with chlorine resistance for simultaneous catalytic oxidation of chlorobenzene and mercury: Cu-Ce interaction and structure. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131585. [PMID: 37163894 DOI: 10.1016/j.jhazmat.2023.131585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Chlorine poisoning effects are still challenging to develop efficient catalysts for applications in chlorobenzene (CB) and mercury (Hg0) oxidation. Herein, three-dimensional porous CuO-modified CeO2-Al2O3 catalysts with macroporous framework and mesoporous walls prepared via a dual template method were employed to study simultaneous oxidation of CB and Hg0. CuO-modified CeO2-Al2O3 catalysts with three-dimensional porous structure exhibited outstanding activity and stability for simultaneous catalytic oxidation of CB and Hg0. The results demonstrated that the addition of CuO into CeO2-Al2O3 can simultaneously enhance the acid sites and redox properties through the electronic inductive effect between CuO and CeO2 (Cu2++Ce3+↔Cu++Ce4+). Importantly, the synergistic effect between Cu and Ce species can induce abundant oxygen vacancies formation, produce more reactive oxygen species and facilitate oxygen migration, which is beneficial for the deep oxidation of chlorinated intermediates. Moreover, macroporous framework and mesoporous nanostructure dramatically improved the specific surface area for enhancing the contact efficiency between reactants and active sites, leading to a remarkable decrease of byproducts deposition. CB and Hg0 had function of mutual promotion in this reaction system. In tune with the experimental results, the possible mechanistic pathways for simultaneous catalytic oxidation of CB and Hg0 were proposed.
Collapse
Affiliation(s)
- Xin Yan
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China
| | - Lingkui Zhao
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China.
| | - Yan Huang
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China
| | - Junfeng Zhang
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China
| | - Su Jiang
- College of Environmental and Resources, Xiangtan University, Xiangtan 411105, PR China; Hunan Provincial Environmental Protection of Engineering Technology Center of Air Complex Pollution Control (XTU), Xiangtan 411105, PR China
| |
Collapse
|
3
|
Research advances of rare earth catalysts for catalytic purification of vehicle exhausts − Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Preparation of K Modified Three-Dimensionally Ordered Macroporous MnCeOx/Ti0.7Si0.3O2 Catalysts and Their Catalytic Performance for Soot Combustion. Processes (Basel) 2021. [DOI: 10.3390/pr9071149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Soot particles in diesel engine exhaust is one of the main reasons for hazy weather and elimination of them is urgent for environmental protection. At present, it is still a challenge to develop new catalysts with high efficiency and low cost. In this paper, a kind of K modified three-dimensionally ordered macroporous (3DOM) MnCeOx/Ti0.7Si0.3O2 catalysts are designed and synthesized by a sample method. Due to the macroporous structure and synergistic effect of K, Mn, and Ce, the KnMnCeOx/Ti0.7Si0.3O2 (KnMnCeOx/M-TSO) catalysts exhibit good catalytic performance for soot combustion. The catalytic activity of K0.5MnCeOx/M-TSO was the best, and the T10, T50, and T90 are 287, 336, and 367 °C, respectively. After the prepared catalyst was doped with K, the physicochemical properties and catalytic performance changed significantly. In addition, the K0.5MnCeOx/M-TSO catalyst also somewhat exhibits sulfur tolerance owing to it containing Ti. Because of its simple synthesis, high activity, and low cost, the prepared KnMnCeOx/M-TSO catalysts are regarded as a promising candidate for application.
Collapse
|
5
|
Lee JH, Jo DY, Choung JW, Kim CH, Ham HC, Lee KY. Roles of noble metals (M = Ag, Au, Pd, Pt and Rh) on CeO 2 in enhancing activity toward soot oxidation: Active oxygen species and DFT calculations. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124085. [PMID: 33265065 DOI: 10.1016/j.jhazmat.2020.124085] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
The effects of noble metal (M = Ag, Au, Pd, Pt, and Rh) on CeO2 in enhancing the activity toward soot oxidation were studied through experimental methods and density functional theory (DFT) calculations. Each noble metal (3 mol.%) was supported on CeO2 (M/CeO2) and the properties of the catalysts were verified by XRD, HRTEM, N2 physisorption, CO chemisorption, XPS, and H2-TPR results. The noble metal was highly dispersed over CeO2, except for Au due to the sintering of Au, and the reducibility of the catalysts was greatly improved according to degree of the interaction between each noble metal and CeO2. The activities of M/CeO2 catalysts for soot oxidation were better than that of CeO2, and followed the order Rh/CeO2 > Ag/CeO2 > Pt/CeO2 > Au/CeO2 > Pd/CeO2 > CeO2. Moreover, our DFT calculations showed that vacancy formation energy was gradually lowered in the following order: CeO2 > Pd4/CeO2 > Pt4/CeO2 > Au4/CeO2 = Ag4/CeO2 > Rh4/CeO2, which was similar order with experimental activity. In addition, the electronic states of the p and f orbitals of CeO2 were studied to compare with the occupied Ce 4f electrons, which affect the redox property. Rh/CeO2 and Ag/CeO2 showed the improved soot oxidation activity, with an enhanced ability to generate oxygen vacancy formation and oxygen adsorption and increased electron transfer. Consequently, the experimental and DFT calculation results revealed the roles of noble metals on ceria with respect to catalytic activity.
Collapse
Affiliation(s)
- Jae Hwan Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Deok Yeon Jo
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Jin Woo Choung
- Advanced Catalysts and Emission-Control Research Lab, Research & Development Division, Hyundai Motor Group, Hyundaiyeonguso-Ro, Namyang-Eup, Hwaseong-Si, Gyeonggi-Do 18280, Republic of Korea
| | - Chang Hwan Kim
- Advanced Catalysts and Emission-Control Research Lab, Research & Development Division, Hyundai Motor Group, Hyundaiyeonguso-Ro, Namyang-Eup, Hwaseong-Si, Gyeonggi-Do 18280, Republic of Korea
| | - Hyung Chul Ham
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Kwan-Young Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea; Super Ultra Low Energy and Emission Vehicle (SULEEV) Center, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Hua X, Zheng Y, Yang Z, Sun L, Su H, Murayama T, Qi C. Gold Nanoparticles Supported on Ce–Zr Oxides for Selective Hydrogenation of Acetylene. Top Catal 2020. [DOI: 10.1007/s11244-020-01379-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Sellers-Antón B, Bailón-García E, Cardenas-Arenas A, Davó-Quiñonero A, Lozano-Castelló D, Bueno-López A. Enhancement of the Generation and Transfer of Active Oxygen in Ni/CeO 2 Catalysts for Soot Combustion by Controlling the Ni-Ceria Contact and the Three-Dimensional Structure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2439-2447. [PMID: 31944674 DOI: 10.1021/acs.est.9b07682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of the three-dimensionally ordered macroporous (3DOM) structure and the Ni doping of CeO2 on the physicochemical properties and catalytic activity for soot combustion was studied. Moreover, the way in which Ni is introduced to the ceria support was also investigated. For this, CeO2 supports were synthesized with uncontrolled (Ref) and 3DOM-structured morphology, and their respective Ni/CeO2 catalysts were prepared by impregnation of the previously synthesized supports or by successive impregnation of both precursors (Ni and Ce) on the 3DOM template. Conclusions reached in this study are: (1) the 3DOM structure increases the surface area of the catalysts and improves the catalyst-soot contact. (2) The doping of CeO2 with Ni improves the catalytic activity because the NiO participates in the catalytic oxidation of NO to NO2, and also favors the production of active oxygen and the catalyst oxygen storage capacity. (3) Ni incorporation method affects its physicochemical and catalytic properties. By introducing Ni by successive infiltration in the solid template, the CeO2 crystal size is reduced, Ni dispersion is improved, and the catalyst reducibility is increased. All of these characteristics make the catalyst synthesized by successive infiltration to have higher catalytic activity for soot combustion than the Ni-impregnated CeO2 catalyst.
Collapse
Affiliation(s)
- Begoña Sellers-Antón
- Department of Inorganic Chemistry , University of Alicante , Carretera de San Vicente s/n , E03080 Alicante , Spain
| | - Esther Bailón-García
- Department of Inorganic Chemistry , University of Alicante , Carretera de San Vicente s/n , E03080 Alicante , Spain
| | - Andrea Cardenas-Arenas
- Department of Inorganic Chemistry , University of Alicante , Carretera de San Vicente s/n , E03080 Alicante , Spain
| | - Arantxa Davó-Quiñonero
- Department of Inorganic Chemistry , University of Alicante , Carretera de San Vicente s/n , E03080 Alicante , Spain
| | - Dolores Lozano-Castelló
- Department of Inorganic Chemistry , University of Alicante , Carretera de San Vicente s/n , E03080 Alicante , Spain
| | - Agustín Bueno-López
- Department of Inorganic Chemistry , University of Alicante , Carretera de San Vicente s/n , E03080 Alicante , Spain
| |
Collapse
|
8
|
Peng S, Sun X, Sun L, Zhang M, Zheng Y, Su H, Qi C. Selective Hydrogenation of Acetylene Over Gold Nanoparticles Supported on CeO2 Pretreated Under Different Atmospheres. Catal Letters 2018. [DOI: 10.1007/s10562-018-2628-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Rao C, Liu R, Feng X, Shen J, Peng H, Xu X, Fang X, Liu J, Wang X. Three-dimensionally ordered macroporous SnO2-based solid solution catalysts for effective soot oxidation. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63123-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Li H, Li K, Zhu X, Du Y, Wei Y, Zhai K, Wang H. Synthesis of mesoporous PrxZr1−xO2−δ solid solution with high thermal stability for catalytic soot oxidation. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Jin B, Wei Y, Zhao Z, Liu J, Li Y, Li R, Duan A, Jiang G. Three-dimensionally ordered macroporous CeO 2 /Al 2 O 3 -supported Au nanoparticle catalysts: Effects of CeO 2 nanolayers on catalytic activity in soot oxidation. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62798-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|