2
|
Kang K, Yao X, Huang Y, Cao J, Rong J, Zhao W, Luo W, Chen Y. Insights into the co-doping effect of Fe 3+ and Zr 4+ on the anti-K performance of CeTiO x catalyst for NH 3-SCR reaction. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125821. [PMID: 33866288 DOI: 10.1016/j.jhazmat.2021.125821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
A novel K-resistant Fe3+ and Zr4+ co-doped CeTiOx catalyst was first prepared by co-precipitation method for the ammonia-selective catalytic reduction (NH3-SCR) of NOx. On the premise of retaining the outstanding catalytic activity of CeTiOx catalyst, Fe3+ and Zr4+ co-doping efficiently improves its K-resistance with superior NOx conversion up to 84% after K-poisoning. Specially, the grain growth during the second calcination after K poisoning is successfully inhibited by Fe3+ and Zr4+ co-doping. Consequently, the large specific surface area with increased acid sites and efficiently retained reducibility over K-poisoned FeZrCeTiOx catalyst are realized, which prompt NH3 activation and NO oxidation, further benefit NH3-SCR. Besides, NH3-SCR reaction over CeTiOx and FeZrCeTiOx catalysts follows a possible L-H mechanism, and K-poisoning makes no change to it. Finally, a reasonable anti-K poisoning mechanism of FeZrCeTiOx catalyst is proposed: the excellent K-resistance is attributed to part of Fe and Zr are sacrificed to form Fe-O-K and Zr-O-K species protecting the active site Ce-O-Ti from K-poisoning, as well as the additional reducibility and surface acidity brought from Fe-O species with Zr prompting its uniform distribution.
Collapse
Affiliation(s)
- Keke Kang
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojiang Yao
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yike Huang
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Jun Cao
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China
| | - Jing Rong
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China
| | - Wanxia Zhao
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China
| | - Wen Luo
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Chen
- Research Center for Atmospheric Environment, Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; College of Resources and Environment, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, PR China; School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
3
|
Catalytic Combustion of Diesel Soot on Ce/Zr Series Catalysts Prepared by Sol-Gel Method. Catalysts 2019. [DOI: 10.3390/catal9080646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cerium-zirconium (Ce-Zr) solid solutions have been extensively used in a wide variety of catalytic processes due to their unique catalytic features in conjunction with lower cost compared to noble metal-based systems. A series of Ce-Zr-based catalysts was prepared by the sol-gel method. The structure and morphology of these catalysts were characterized by X-ray diffraction, thermogravimetric-differential scanning calorimetry, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Furthermore, investigation on catalytic performance was carried out by constructing a test platform, and the result indicated that the catalysts apparently decreased the soot ignition temperature. These catalysts exhibited higher catalytic activity for soot oxidation under narrow contact conditions. The results revealed that some soot particles could react with adsorbed oxygen, and other part of diesel soot reacted with lattice oxygen. The activity of these catalysts was attributed to synergistic effect arising from the combination of K/Co/Zr and Ce-Zr solid solution, which led to the decrease in the ignition temperature to 294 °C (data from the test platform). The catalyst still keeps good stability and catalytic activity after the cycle oxidation experiment. A reaction pathway was proposed to explain catalytic combustion process of soot, i.e., combination of K/Co/Zr with Ce-Zr solid solution reduced the binding energy of Ce-Zr solid solution, which was conducive to provide more active sites to release the active oxygen (O2−) or lattice oxygen (O2−).
Collapse
|