1
|
Wei Y, Zhao D, Wang D. Mesoscience in Hollow Multi-Shelled Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305408. [PMID: 38032116 PMCID: PMC10885658 DOI: 10.1002/advs.202305408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/28/2023] [Indexed: 12/01/2023]
Abstract
The prevalence of mesoscale complexity in materials science underscores the significance of the compromise in competition principle, which gives rise to the emergence of mesoscience. This principle offers valuable insights into understanding the formation process, characteristics, and performance of complex material systems, ultimately guiding the future design of such intricate materials. Hollow multi-shelled structures (HoMS) represent a groundbreaking multifunctional structural system that encompasses several spatial regimes. A plethora of mesoscale cases within HoMS present remarkable opportunities for exploring, understanding, and utilizing mesoscience, varying from the formation process of HoMS, to the mesoscale structural parameters, and finally the distinctive mass/energy transfer behaviors exhibited by HoMS. The compromise in competition between the diffusion and reaction contributes to the successful formation of multi-shells of HoMS, allowing for precise regulation of the structural parameters by dynamically varying the interplay between two dominances. Moreover, the distinct roles played by the shells and cavities within HoMS significantly influence the energy/mass transfer processes with the unique temporal-spatial resolution, providing guidance for customizing the application performance. Hopefully, the empirical and theoretical anatomy of HoMS following mesoscience would fuel new discoveries within this promising and complex multifunctional material system.
Collapse
Affiliation(s)
- Yanze Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Habibi Zare M, Mehrabani-Zeinabad A. Yolk@Wrinkled-double shell smart nanoreactors: new platforms for mineralization of pharmaceutical wastewater. Front Chem 2023; 11:1211503. [PMID: 37347043 PMCID: PMC10281210 DOI: 10.3389/fchem.2023.1211503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Nanomaterials with "yolk and shell" "structure" can be considered as "nanoreactors" that have significant potential for application in catalysis. Especially in terms of electrochemical energy storage and conversion, the nanoelectrode has a large specific surface area with a unique yolk@shell structure, which can reduce the volume change of the electrode during the charging and discharging process and fast ion/electron transfer channels. The adsorption of products and the improvement of conversion reaction efficiency can greatly improve the stability, speed and cycle performance of the electrode, and it is a kind of ideal electrode material. In this research, heterojunction nanoreactors (FZT Y@WDS) Fe3O4@ZrO2-X@TiO2-X were firstly synthesized based on the solvothermal combined hard-template process, partial etching and calcination. The response surface method was used to determine the performance of the FZT Y@WDS heterojunction nanoreactors and the effects of four process factors: naproxen concentration (NAP), solution pH, the amount of charged photocatalyst, and the irradiation time for photocatalytic degradation of NAP under visible light irradiation. To maximize the photocatalytic activity, the parameters of the loaded catalyst, the pH of the reaction medium, the initial concentration of NAP, and the irradiation time were set to 0.5 g/L, 3, 10 mg/L, and 60 min, respectively, resulting in complete removal of NAP and the optimum amount was calculated to be 0.5 g/L, 5.246, 14.092 mg/L, and 57.362 min, respectively. Considering the promising photocatalytic activity of FZT Y@WDS under visible light and the separation performance of the nanocomposite, we proposed this photocatalyst as an alternative solution for the treatment of pharmaceutical wastewater.
Collapse
Affiliation(s)
- Masoud Habibi Zare
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
3
|
Goksu A, Li H, Liu J, Duyar MS. Nanoreactor Engineering Can Unlock New Possibilities for CO 2 Tandem Catalytic Conversion to C-C Coupled Products. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300004. [PMID: 37287598 PMCID: PMC10242537 DOI: 10.1002/gch2.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Indexed: 06/09/2023]
Abstract
Climate change is becoming increasingly more pronounced every day while the amount of greenhouse gases in the atmosphere continues to rise. CO2 reduction to valuable chemicals is an approach that has gathered substantial attention as a means to recycle these gases. Herein, some of the tandem catalysis approaches that can be used to achieve the transformation of CO2 to C-C coupled products are explored, focusing especially on tandem catalytic schemes where there is a big opportunity to improve performance by designing effective catalytic nanoreactors. Recent reviews have highlighted the technical challenges and opportunities for advancing tandem catalysis, especially highlighting the need for elucidating structure-activity relationships and mechanisms of reaction through theoretical and in situ/operando characterization techniques. In this review, the focus is on nanoreactor synthesis strategies as a critical research direction, and discusses these in the context of two main tandem pathways (CO-mediated pathway and Methanol-mediated pathway) to C-C coupled products.
Collapse
Affiliation(s)
- Ali Goksu
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| | - Haitao Li
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Jian Liu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Melis S. Duyar
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| |
Collapse
|
4
|
Wu T, Guo RT, Li CF, You YH, Pan WG. Recent advances in core-shell structured catalysts for low-temperature NH 3-SCR of NO x. CHEMOSPHERE 2023; 333:138942. [PMID: 37187371 DOI: 10.1016/j.chemosphere.2023.138942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Ammonia selective catalytic reduction (NH3-SCR) of nitrogen oxides is an effective and well-established technology for NOx removal, but current commercial denitrification catalysts based on V2O5-WO3/TiO2 have some obvious disadvantages, including narrow operating temperature windows, toxicity, poor hydrothermal stability, and unsatisfied SO2/H2O tolerance. To overcome these drawbacks, it is imperative to investigate new types of highly efficient catalysts. In order to design catalysts with outstanding selectivity, activity, and anti-poisoning ability, core-shell structured materials have been widely applied in the NH3-SCR reaction, which exhibits numerous advantages including the large surface area, the strong synergy interaction of core-shell materials, the confinement effect, and the shielding effect from the shell layer to protect the core. This review summarizes recent developments of core-shell structured catalysts for NH3-SCR, including basic classification, synthesis methods, and a detailed description of the performance and mechanisms of each type of catalyst. It is hoped that the review will stimulate future developments in NH3-SCR technology, leading to novel catalyst designs with improved denitrification performance.
Collapse
Affiliation(s)
- Tong Wu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China; Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, China.
| | - Chu-Fan Li
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
| | - Yi-Hao You
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China
| | - Wei-Guo Pan
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, People's Republic of China; Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, China.
| |
Collapse
|
5
|
Yu Z, Ji N, Li X, Zhang R, Qiao Y, Xiong J, Liu J, Lu X. Kinetics Driven by Hollow Nanoreactors: An Opportunity for Controllable Catalysis. Angew Chem Int Ed Engl 2023; 62:e202213612. [PMID: 36346146 DOI: 10.1002/anie.202213612] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/11/2022]
Abstract
As a novel class of catalytic materials, hollow nanoreactors offer new opportunities for improving catalytic performance owing to their higher controllability on molecular kinetic behavior. Nevertheless, to achieve controllable catalysis with specific purposes, the catalytic mechanism occurring inside hollow nanoreactors remains to be further understood. In this context, this Review presents a focused discussion about the basic concept of hollow nanoreactors, the underlying theory for hollow nanoreactor-driven kinetics, and the intrinsic correlation between key structural parameters of hollow nanoreactors and molecular kinetic behaviors. We aim to provide in-depth insights into understanding kinetics occurred within typical hollow nanoreactors. The perspectives proposed in this paper may contribute to the development of the fundamental theoretical framework of hollow nanoreactor-driven catalysis.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-Sen University, Guangdong, 510275, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P.R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China.,DICP-Surrey Joint Centre for Future Materials, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Xuebin Lu
- School of Science, Tibet University, Lhasa, 850000, P.R. China
| |
Collapse
|
6
|
Si M, Lin F, Ni H, Wang S, Lu Y, Meng X. Research progress of yolk-shell structured nanoparticles and their application in catalysis. RSC Adv 2023; 13:2140-2154. [PMID: 36712609 PMCID: PMC9834765 DOI: 10.1039/d2ra07541e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Yolk-shell nanoparticles (YSNs) have attracted a broad interest in the field of catalysis due to their unique structure and properties. The hollow structure of YSNs brings high porosity and specific surface areas which is conducive to the catalytic reactions. The flexible tailorability and functionality of both the cores and shells allow a rational design of the catalyst and may have synergistic effect which will improve the catalytic performance. Herein, an overview of the research progress with respect to the synthesis and catalytic applications of YSNs is provided. The major strategies for the synthesis of YSNs are presented, including hard template method, soft template method, ship-in-a-bottle method, galvanic replacement method, Kirkendall diffusion method as well as the Ostwald ripening method. Moreover, we discuss in detail the recent progress of YSNs in catalytic applications including chemical catalysis, photocatalysis and electrocatalysis. Finally, the future research and development of YSNs are prospected.
Collapse
Affiliation(s)
- Meiyu Si
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai Weihai 264209 Shandong Province China
| | - Feng Lin
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
| | - Huailan Ni
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
| | - Shanshan Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai Weihai 264209 Shandong Province China
| | - Yaning Lu
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 Shandong Province China
| | - Xiangyan Meng
- Department of Chemistry and Chemical Engineering, Heze University Heze 274015 Shandong Province China
| |
Collapse
|
7
|
Bao B, Liu Y, Sun M, Huang B, Hu Y, Da P, Ji D, Xi P, Yan CH. Boosting the Electrocatalytic Oxygen Evolution of Perovskite LaCo 1- x Fe x O 3 by the Construction of Yolk-Shell Nanostructures and Electronic Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201131. [PMID: 35618483 DOI: 10.1002/smll.202201131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Realizing the rational design of perovskite oxides with controllable compositions and nanostructures remains a tremendous challenge for the development of efficient electrocatalysts. Herein, a ligand-assisted synthetic strategy to fabricate perovskite oxides LaCo1- x Fex O3 with yolk-shell nanostructures is developed. Benefiting from the unique structural and compositional merits, LaCo0.75 Fe0.25 O3 exhibits an overpotential of 310 mV at a current density of 10 mA cm-2 and long-term stability of 100 h for the oxygen evolution reaction. In situ Raman spectroscopy demonstrates that Fe substitution facilitates the pre-oxidation of Co sites and induces the surface reconstruction into active Co oxyhydroxides at a relatively lower applied potential, guaranteeing excellent catalytic performances. Density functional theory calculations unravel that the appropriate introduction of Fe into perovskite LaCoO3 leads to the improved electroactivity and durability of the catalyst for the oxygen evolution reaction (OER). Fe-3d orbitals show a pinning effect on Co-3d orbitals to maintain the stable valence state of Co sites at the low overpotential of the OER. Furthermore, Zn-air batteries (ZABs) assembled with LaCo0.75 Fe0.25 O3 display a high open circuit potential of 1.47 V, superior energy density of 905 Wh kg-1 Zn , and excellent stability in a large temperature range. This work supplies novel insights into the future developments of perovskite-based electrocatalysts.
Collapse
Affiliation(s)
- Bian Bao
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yana Liu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Deguang Ji
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
9
|
Price CAH, Pastor-Perez L, Reina TR, Liu J. Yolk-Shell structured NiCo@SiO2 nanoreactor for CO2 upgrading via reverse water-gas shift reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Liu H, Chen BQ, Pan YJ, Fu CP, Kankala RK, Wang SB, Chen AZ. Role of supercritical carbon dioxide (scCO 2) in fabrication of inorganic-based materials: a green and unique route. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:695-717. [PMID: 34512177 PMCID: PMC8425740 DOI: 10.1080/14686996.2021.1955603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In recent times, the supercritical carbon dioxide (scCO2) process has attracted increasing attention in fabricating diverse materials due to the attractive features of environmentally benign nature and economically promising character. Owing to these unique characteristics and high-penetrability, as well as diffusivity conditions of scCO2, this high-pressure technology, with mild operation conditions, cost-effective, and non-toxic, among others, is often applied to fabricate various organic and inorganic-based materials, resulting in the unique crystal architectures (amorphous, crystalline, and heterojunction), tunable architectures (nanoparticles, nanosheets, and aerogels) for diverse applications. In this review, we give an emphasis on the fabrication of various inorganic-based materials, highlighting the recent research on the driving factors for improving the quality of fabrication in scCO2, procedures for production and dispersion in scCO2, as well as common indicators utilized to assess quality and processing ability of materials. Next, we highlight the effects of specific properties of scCO2 towards synthesizing the highly functional inorganic-based nanomaterials. Finally, we summarize this compilation with interesting perspectives, aiming to arouse a more comprehensive utilization of scCO2 to broaden the horizon in exploring the green/eco-friendly processing of such versatile inorganic-based materials. Together, we firmly believe that this compilation endeavors to disclose the latent capability and universal prevalence of scCO2 in the synthesis and processing of inorganic-based materials.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen, P. R. China
| | - Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| | - Yu-Jing Pan
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
| | - Chao-Ping Fu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, P. R. China
- College of Chemical Engineering, Huaqiao University, Xiamen, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, P. R. China
| |
Collapse
|
11
|
Arora G, Yadav M, Gaur R, Gupta R, Yadav P, Dixit R, Sharma RK. Fabrication, functionalization and advanced applications of magnetic hollow materials in confined catalysis and environmental remediation. NANOSCALE 2021; 13:10967-11003. [PMID: 34160507 DOI: 10.1039/d1nr01010g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic hollow-structured functional hybrid materials with unique architectures and preeminent properties have always been an area of extensive research. They represent a subtle collaboration of hollow architecture, mesoporous nanostructure and magnetic character. Owing to the merits of a large void space, low density, high specific surface area, well-defined active sites and facile magnetic recovery, these materials present promising application projections in numerous fields, such as drug delivery, adsorption, storage, catalysis and many others. In this review, recent progress in the design, synthesis, functionalization and applications of magnetic hollow-meso/nanostructured materials are discussed. The first part of the review has been dedicated to the preparation and functionalization of the materials. The synthetic protocols have been broadly classified into template-assisted and template-free methods and major trends in their synthesis have been elaborated in detail. Furthermore, the benefits and drawbacks of each method are compared. The later part summarizes the application aspects of confined catalysis in organic transformations and environmental remediation such as degradation of organic pollutants, dyes and antibiotics and adsorption of heavy metal ions. Finally, an outlook of future directions in this research field is highlighted.
Collapse
Affiliation(s)
- Gunjan Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | | | | | | | | | | | | |
Collapse
|
12
|
Lu Y, Guo D, Zhao Y, Moyo PS, Zhao Y, Wang S, Ma X. Enhanced catalytic performance of Nix-V@HSS catalysts for the DRM reaction: The study of interfacial effects on Ni-VOx structure with a unique yolk-shell structure. J Catal 2021. [DOI: 10.1016/j.jcat.2021.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Ye RP, Wang X, Price CAH, Liu X, Yang Q, Jaroniec M, Liu J. Engineering of Yolk/Core-Shell Structured Nanoreactors for Thermal Hydrogenations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1906250. [PMID: 32406190 DOI: 10.1002/smll.201906250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Heterogeneous hydrogenation reactions are of great importance for chemical upgrading and synthesis, but still face the challenges of controlling selectivity and long-term stability. To improve the catalytic performance, many hydrogenation reactions utilize special yolk/core-shell nanoreactors (YCSNs) with unique architectures and advantageous properties. This work presents the developmental and technological challenges in the preparation of YCSNs that are potentially useful for hydrogenation reactions, and provides a summary of the properties of these materials. The work also addresses the scientific challenges in applications of these YCSNs in various gas and liquid-phase hydrogenation reactions. The catalyst structures, catalytic performance, structure-performance relationships, reaction mechanisms, and unsolved problems are discussed too. Also, a brief outlook and opportunities for future research in this field are presented. This work on the advancements in YCSNs might inspire the creation of new materials with desired structures for achieving maximal hydrogenation performances.
Collapse
Affiliation(s)
- Run-Ping Ye
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xinyao Wang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Cameron-Alexander Hurd Price
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| | - Xiaoyan Liu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Qihua Yang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Mietek Jaroniec
- Department of Chemistry, Kent State University, Kent, OH, 44242, USA
| | - Jian Liu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| |
Collapse
|
14
|
Xue Y, Xu L, Chen M, Wu CE, Cheng G, Wang N, Hu X. Constructing Ni-based confinement catalysts with advanced performances toward the CO 2 reforming of CH 4: state-of-the-art review and perspectives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01039e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of Ni-based confinement catalysts has been proposed and developed to address the challenge of the thermal sintering of metallic Ni active sites during CRM by the space and/or lattice confinement effects.
Collapse
Affiliation(s)
- Yingying Xue
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Cai-e Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Ge Cheng
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, P.R. China
| |
Collapse
|
15
|
Zheng YL, Liu HC, Zhang YW. Engineering Heterostructured Nanocatalysts for CO 2 Transformation Reactions: Advances and Perspectives. CHEMSUSCHEM 2020; 13:6090-6123. [PMID: 32662587 DOI: 10.1002/cssc.202001290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
Abstract
As a conceivable route to achieving anthropological carbon looping, carbon capture and utilization (CCU) technologies employ waste CO2 as an accessible C1 building block to generate upgraded chemicals or fuels, thereby simultaneously remedying environmental issues and energy crises. However, efficient CO2 conversion is disfavored by both its thermodynamics and its kinetics. Heterostructured materials with well-controlled interfaces have great potential for enhanced catalytic performance in various CO2 transformation reactions, owing to the synergistic effects among components, numerous interfacial and/or surface active sites, increased CO2 adsorption capacity, promoted charge transfer efficiency, and unique physicochemical properties. This Review highlights the state of the art in typical heterostructures, such as core-shell, yolk-shell, Janus, hierarchical (branched and hollow), and 2D/2D layered structures, applied for CO2 conversion with various energy inputs (radiation, electricity, heat). Fabrication methods of different heterostructures and structure-composition-performance relationships are also discussed concisely. Finally, a brief summary and prospective research directions are provided. The motivation of this Review is to offer instructive information on the applicability of inorganic heterostructures for CO2 transformation reactions, and it is hoped that further enlightening studies in this field could emerge in the future.
Collapse
Affiliation(s)
- Ya-Li Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Hai-Chao Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| |
Collapse
|
16
|
Wei Y, Yang N, Huang K, Wan J, You F, Yu R, Feng S, Wang D. Steering Hollow Multishelled Structures in Photocatalysis: Optimizing Surface and Mass Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002556. [PMID: 32692469 DOI: 10.1002/adma.202002556] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Hollow multishelled structures (HoMSs) provide a promising platform for fabricating photocatalysts, because the unique structure optimizes the effective surface and mass transport, showing enhanced light absorption, optimized mass transport and highly effective active sites exposed. Subsequently, the rational design on HoMS photocatalytsts is elaborated to boost the photocatalytic activity with efforts in all dimensions, from nanoscale to microscale. Breakthroughs in synthetic methodology of HoMSs have greatly evoked the prosperous photocatalytic researches for HoMSs since the developing of sequential templating approach in 2009. The dawn of HoMS photocatalyst is coming after revealing the temporal-spatial ordering property, which is also discussed in this paper with pioneer works demonstrating the greatly enhanced energy/mass transfer processes. Some insights into the key challenges and perspectives of HoMSs photocatalysts are also discussed. With the reviewed fate and future of HoMSs photocatalysts, hopefully new concepts and innovative works can be inspired to flourish this sun-rise field.
Collapse
Affiliation(s)
- Yanze Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing, 100190, P. R. China
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing, 100190, P. R. China
| | - KeKe Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing, 100190, P. R. China
| | - Feifei You
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing, 100190, P. R. China
| | - Ranbo Yu
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Beijing, 100190, P. R. China
| |
Collapse
|
17
|
Facile synthesis and photoelectrochemical properties of novel TiN/C3N4/CdS nanotube core/shell arrays. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63512-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Tian H, Liang J, Liu J. Nanoengineering Carbon Spheres as Nanoreactors for Sustainable Energy Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903886. [PMID: 31559668 DOI: 10.1002/adma.201903886] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Indexed: 04/14/2023]
Abstract
Colloidal carbon sphere nanoreactors have been explored extensively as a class of versatile materials for various applications in energy storage, electrochemical conversion, and catalysis, due to their unique properties such as excellent electrical conductivity, high specific surface area, controlled porosity and permeability, and surface functionality. Here, the latest updated research on colloidal carbon sphere nanoreactor, in terms of both their synthesis and applications, is summarized. Various synthetic strategies are first discussed, including the hard template method, the soft template method, hydrothermal carbonization, the microemulsion polymerization method, and extension of the Stöber method. Then, the functionalization of colloidal carbon sphere nanoreactors, including the nanoengineering of compositions and the surface features, is discussed. Afterward, recent progress in the major applications of colloidal carbon sphere nanoreactors, in the areas of energy storage, electrochemical conversion, and catalysis, is presented. Finally, the perspectives and challenges for future developments are discussed in terms of controlled synthesis and functionalization of the colloidal carbon sphere nanoreactors with tunable structure, and the composition and properties that are desirable for practical applications.
Collapse
Affiliation(s)
- Hao Tian
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ji Liang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering and Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
19
|
Li B, Zeng HC. Architecture and Preparation of Hollow Catalytic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801104. [PMID: 30160321 DOI: 10.1002/adma.201801104] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Indexed: 05/24/2023]
Abstract
Since pioneering work done in the late 1990s, synthesis of functional hollow materials has experienced a rapid growth over the past two decades while their applications have been proven to be advantageous across many technological fields. In the field of heterogeneous catalysis, the development of micro- and nanoscale hollow materials as catalytic devices has also yielded promising results, because of their higher activity, stability, and selectivity. Herein, the architecture and preparation of these catalysts with tailorable composition and morphology are reviewed. First, synthesis of hollow materials is introduced according to the classification of template mediated, template free, and combined approaches. Second, different architectural designs of hollow catalytic devices, such as those without functionalization, with active components supported onto hollow materials, with active components incorporated within porous shells, and with active components confined within interior cavities, are evaluated respectively. The observed catalytic performances of this new class of catalysts are correlated to structural merits of individual configuration. Examples that demonstrate synthetic approaches and architected configurations are provided. Lastly, possible future directions are proposed to advance this type of hollow catalytic devices on the basis of our personal perspectives.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore
| |
Collapse
|
20
|
Ren X, Guo M, Li H, Li C, Yu L, Liu J, Yang Q. Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaomin Ren
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Miao Guo
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - He Li
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Chengbin Li
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Liang Yu
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jian Liu
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering and Advanced Technology Institute University of Surrey Guildford Surrey GU2 7XH UK
| | - Qihua Yang
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
21
|
Ren X, Guo M, Li H, Li C, Yu L, Liu J, Yang Q. Microenvironment Engineering of Ruthenium Nanoparticles Incorporated into Silica Nanoreactors for Enhanced Hydrogenations. Angew Chem Int Ed Engl 2019; 58:14483-14488. [DOI: 10.1002/anie.201908602] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaomin Ren
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Miao Guo
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - He Li
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Chengbin Li
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Liang Yu
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jian Liu
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering and Advanced Technology Institute University of Surrey Guildford Surrey GU2 7XH UK
| | - Qihua Yang
- State Key Laboratory of Catalysis,iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
22
|
Soares SF, Fernandes T, Daniel-da-Silva AL, Trindade T. The controlled synthesis of complex hollow nanostructures and prospective applications †. Proc Math Phys Eng Sci 2019; 475:20180677. [PMID: 31105450 PMCID: PMC6501658 DOI: 10.1098/rspa.2018.0677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Functionality in nanoengineered materials has been usually explored on structural and chemical compositional aspects of matter that exist in such solid materials. It is well known that the absence of solid matter is also relevant and the existence of voids confined in the nanostructure of certain particles is no exception. Indeed, over the past decades, there has been great interest in exploring hollow nanostructured materials that besides the properties recognized in the dense particles also provide empty spaces, in the sense of condensed matter absence, as an additional functionality to be explored. As such, the chemical synthesis of hollow nanostructures has been driven not only for tailoring the size and shape of particles with well-defined chemical composition, but also to achieve control on the type of hollowness that characterize such materials. This review describes the state of the art on late developments concerning the chemical synthesis of hollow nanostructures, providing a number of examples of materials obtained by distinct strategies. It will be apparent by reading this progress report that the absence of solid matter determines the functionality of hollow nanomaterials for several technological applications.
Collapse
Affiliation(s)
- Sofia F Soares
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3801-193 Aveiro, Portugal
| | - Tiago Fernandes
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3801-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3801-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3801-193 Aveiro, Portugal
| |
Collapse
|
23
|
Advantages of Yolk Shell Catalysts for the DRM: A Comparison of Ni/ZnO@SiO2 vs. Ni/CeO2 and Ni/Al2O3. CHEMISTRY-SWITZERLAND 2018. [DOI: 10.3390/chemistry1010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Encapsulation of metal nanoparticles is a leading technique used to inhibit the main deactivation mechanisms in dry reforming of methane reaction (DRM): Carbon formation and Sintering. Ni catalysts (15%) supported on alumina (Al2O3) and ceria (CeO2) have shown they are no exception to this analysis. The alumina supported catalysts experienced graphitic carbonaceous deposits, whilst the ceria showed considerable sintering over 15 h of DRM reaction. The effect of encapsulation compared to that of the performance of uncoated catalysts for DRM reaction has been examined at different temperatures, before conducting longer stability tests. The encapsulation of Ni/ZnO cores in silica (SiO2) leads to advantageous conversion of both CO2 and CH4 at high temperatures compared to its uncoated alternatives. This work showcases the significance of the encapsulation process and its overall effects on the catalytic performance in chemical CO2 recycling via DRM.
Collapse
|
24
|
Zhao M, Wang W, Huang C, Dong W, Wang Y, Cheng S, Wang H, Qian H. Facile synthesis of UCNPs/Zn x Cd 1-x S nanocomposites excited by near-infrared light for photochemical reduction and removal of Cr(VI). CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63061-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
ZrO 2 -modified Ni/LaAl 11 O 18 catalyst for CO methanation: Effects of catalyst structure on catalytic performance. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)62995-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Price CAH, Pastor-Pérez L, Ramirez Reina T, Liu J. Robust mesoporous bimetallic yolk–shell catalysts for chemical CO2 upgrading via dry reforming of methane. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00058a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new generation highly efficient and stable mesoporous ZnO/Ni@silica yolk–shell catalyst is designed for chemical CO2 recycling, to solve the coking and sintering issues of traditional catalysts.
Collapse
Affiliation(s)
| | - Laura Pastor-Pérez
- Department of Chemical Engineering and Process Engineering
- University of Surrey
- Guildford
- UK
- Laboratorio de Materiales Avanzados
| | - Tomas Ramirez Reina
- Department of Chemical Engineering and Process Engineering
- University of Surrey
- Guildford
- UK
| | - Jian Liu
- Department of Chemical Engineering and Process Engineering
- University of Surrey
- Guildford
- UK
- State Key Laboratory of Catalysis
| |
Collapse
|
27
|
Lanzafame P, Perathoner S, Centi G, Gross S, Hensen EJM. Grand challenges for catalysis in the Science and Technology Roadmap on Catalysis for Europe: moving ahead for a sustainable future. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01067b] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective discusses the general concepts that will guide future catalysis and related grand challenges based on the Science and Technology Roadmap on Catalysis for Europe prepared by the European Cluster on Catalysis.
Collapse
Affiliation(s)
- P. Lanzafame
- Dept.s ChiBioFarAm and MIFT – Chimica Industriale
- University of Messina (Italy)
- INSTM/CASPE and ERIC aisbl
- 98166 Messina
- Italy
| | - S. Perathoner
- Dept.s ChiBioFarAm and MIFT – Chimica Industriale
- University of Messina (Italy)
- INSTM/CASPE and ERIC aisbl
- 98166 Messina
- Italy
| | - G. Centi
- Dept.s ChiBioFarAm and MIFT – Chimica Industriale
- University of Messina (Italy)
- INSTM/CASPE and ERIC aisbl
- 98166 Messina
- Italy
| | - S. Gross
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia
- ICMATE-CNR
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
| | - E. J. M. Hensen
- Laboratory of Inorganic Materials Chemistry
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|