1
|
Wang Z, Yin M, Pang J, Wu P, Song L, Li X, Zheng M. Enhanced Conversion of Ethanol into n-Butanol over NiCeO 2@CNTs Catalysts with Pore Enrichment Effects. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Zhinuo Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, Liaoning116028, China
| | - Ming Yin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, China
| | - Jifeng Pang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, China
| | - Pengfei Wu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Lei Song
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Xianquan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, China
| | - Mingyuan Zheng
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, Liaoning116023, China
| |
Collapse
|
2
|
Yadav MD, Joshi HM, V Sawant S, Dasgupta K, Patwardhan AW, Joshi JB. Advances in the Application of Carbon Nanotubes as Catalyst Support for Hydrogenation Reactions. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
3
|
Zhang R, Wang L, Ren J, Hu C, Lv B. Effect of boron nitride overlayers on Co@BNNSs/BN-Catalyzed aqueous phase selective hydrogenation of cinnamaldehyde. J Colloid Interface Sci 2023; 630:549-558. [DOI: 10.1016/j.jcis.2022.10.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
4
|
Yu Z, Ji N, Xiong J, Han Y, Li X, Zhang R, Qiao Y, Zhang M, Lu X. Ultrafine Ruthenium Clusters Shell-Embedded Hollow Carbon Spheres as Nanoreactors for Channel Microenvironment-Modulated Furfural Tandem Hydrogenation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201361. [PMID: 35760757 DOI: 10.1002/smll.202201361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Rationally modulating the catalytic microenvironment is important for targeted induction of specific molecular behaviors to fulfill complicated catalytic purposes. Herein, a metal pre-chelating assisted assembly strategy is developed to facilely synthesize the hollow carbon spheres with ultrafine ruthenium clusters embedded in pore channels of the carbon shell (Ru@Shell-HCSs), which can be employed as nanoreactors with preferred electronic and geometric catalytic microenvironments for the efficient tandem hydrogenation of biomass-derived furfural toward 2-methylfuran. The channel-embedding structure is proved to confer the ultrafine ruthenium clusters with an electron-deficient property via a reinforced interfacial charge transfer mechanism, which prompts the hydrogenolysis of intermediate furfuryl alcohol during the tandem reaction, thus resulting in an enhanced 2-methylfuran generation. Meanwhile, lengthening the shell pore channel can offer reactant molecules with a prolonged diffusion path, and correspondingly a longer retention time in the channel, thereafter delivering an accelerated tandem hydrogenation progression. This paper aims to present a classic case that emphasizes the critical role of precisely controlling the catalytic microenvironment of the metal-loaded hollow nanoreactors in coping with the arduous challenges from multifunctional catalyst-driven complex tandem reactions.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - You Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-Sen University, Guangdong, 510275, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Ming Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| |
Collapse
|
5
|
Hydrogenation of Polycyclic Aromatic Hydrocarbons over Pt/γ-Al2O3 Catalysts in a Trickle Bed Reactor. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Hu X, Min X, Li X, Si M, Liu L, Zheng J, Yang W, Zhao F. Co-Co 3O 4 encapsulated in nitrogen-doped carbon nanotubes for capacitive desalination: Effects of nano-confinement and cobalt speciation. J Colloid Interface Sci 2022; 616:389-400. [PMID: 35228044 DOI: 10.1016/j.jcis.2022.02.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/22/2023]
Abstract
Capacitive deionization (CDI) has gained increasing attention as an environmentally friendly and energy-efficient technology for brackish water desalination. However, traditional CDI electrodes still suffer from low salt adsorption capacity and unsatisfactory reusability, which inhibit its application for long-term operations. Herein, we present a facile and effective approach to prepare Co and Co3O4 nanoparticles co-incorporating nitrogen-doped (N-doped) carbon nanotubes (Co-Co3O4/N-CNTs) via a pyrolysis route. The Co-Co3O4 nanoparticles were homogeneously in-situ encapsulated in the inner channels of the conductive CNTs to form a novel and efficient CDI electrode for the first time. The encapsulation of Co-Co3O4 nanoparticles in CNTs not only inhibits the Co leaching but also significantly enhances the desalination capacity. The morphology, structure, and capacitive desalination properties of the Co-Co3O4/N-CNTs were thoroughly characterized to illuminate the nano-confinement effects and the key roles of the interaction between cobalt species in the CDI performance. The co-existing metallic cobalt and cobalt oxides act as the roles of effective active sites in the CDI performance. As a consequence, the optimum Co-Co3O4/N-CNTs electrode displays an outstanding desalination capacity of 66.91 mg NaCl g-1 at 1.4 V. This work provides insights for understanding the nano-confinement effects and the key roles of the interaction between cobalt species on the CDI performance.
Collapse
Affiliation(s)
- Xiaoxian Hu
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Xiaobo Min
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Xinyu Li
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Mengying Si
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Lu Liu
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Junhao Zheng
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Weichun Yang
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China.
| | - Feiping Zhao
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
7
|
Feng M, Dong Q, Wu N, Wen JJ, Wang QY, Tong YC. Adsorption of CO, O2, and H2O by Iron Confined in B-Doped Carbon Nanotubes: Theoretical Study. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422140102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Yu Z, Ji N, Xiong J, Li X, Zhang R, Zhang L, Lu X. Ruthenium‐Nanoparticle‐Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void‐Confinement Effect. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Na Ji
- School of Environmental Science and Engineering Tianjin Key Laboratory of Biomass/Wastes Utilization Tianjin University Tianjin 300350 P. R. China
| | - Jian Xiong
- School of Science Tibet University Lhasa Tibet 850000 P. R. China
| | - Xiaoyun Li
- School of Agriculture Sun Yat-sen University Guangzhou Guangdong 510275 P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering Tianjin Chengjian University Tianjin 300384 P. R. China
| | - Lidong Zhang
- State Key Laboratory of Fire Science University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xuebin Lu
- School of Science Tibet University Lhasa Tibet 850000 P. R. China
| |
Collapse
|
9
|
Yu Z, Ji N, Xiong J, Li X, Zhang R, Zhang L, Lu X. Ruthenium-Nanoparticle-Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void-Confinement Effect. Angew Chem Int Ed Engl 2021; 60:20786-20794. [PMID: 34159675 DOI: 10.1002/anie.202107314] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/17/2022]
Abstract
As a typical class of man-made nanoreactors, metal-loaded hollow carbon nanostructures (MHC nanoreactors) exhibit competitive potentials in the heterogeneous catalysis due to their tailorable microenvironment effects, in which the void-confinement effect is one of the most fundamental functions in boosting the catalytic performance. Herein this paper, Ru-loaded hollow carbon spheres are employed as nanoreactors with a crucial biomass hydrogenation process, levulinic acid (LA) hydrogenation into γ-valerolactone, as the probe reaction to further recognize the forming mechanism of this pivotal effect. We demonstrated that the void-confinement effect of the selected MHC nanoreactors is essentially driven by an integrating action of electronic metal-support interaction, reactant enrichment and diffusion, which are mainly ascribed to peculiar properties of hollow nanoreactors both in electronic and structural aspects, respectively. This work offers a distinct case for interpreting the catalytic behaviour of MHC nanoreactors, which could potentially promise broader insights into the microenvironment engineering strategies of hollow nanostructures.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, Tibet, 850000, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Lidong Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xuebin Lu
- School of Science, Tibet University, Lhasa, Tibet, 850000, P. R. China
| |
Collapse
|
10
|
Padmanaban S, Gunasekar GH, Yoon S. Direct Heterogenization of the Ru-Macho Catalyst for the Chemoselective Hydrogenation of α,β-Unsaturated Carbonyl Compounds. Inorg Chem 2021; 60:6881-6888. [PMID: 33576602 DOI: 10.1021/acs.inorgchem.0c03681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, a commercially available homogeneous pincer-type complex, Ru-Macho, was directly heterogenized via the Lewis acid-catalyzed Friedel-Crafts reaction using dichloromethane as the cross-linker to obtain a heterogeneous, pincer-type Ru porous organometallic polymer (Ru-Macho-POMP) with a high surface area. Notably, Ru-Macho-POMP was demonstrated to be an efficient heterogeneous catalyst for the chemoselective hydrogenation of α,β-unsaturated carbonyl compounds to their corresponding allylic alcohols using cinnamaldehyde as a model compound. The Ru-Macho-POMP catalyst showed a high turnover frequency (TOF = 920 h-1) and a high turnover number (TON = 2750), with high chemoselectivity (99%) and recyclability during the selective hydrogenation of α,β-unsaturated carbonyl compounds.
Collapse
Affiliation(s)
- Sudakar Padmanaban
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.,Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Gunniya Hariyanandam Gunasekar
- Clean Energy Research Centre, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 136-791, Republic of Korea
| | - Sungho Yoon
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
11
|
Padmanaban S, Lee Y, Yoon S. Chemoselective hydrogenation of α,β-unsaturated carbonyl compounds using a recyclable Ru catalyst embedded on a bisphosphine based POP. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Lan X, Wang T. Highly Selective Catalysts for the Hydrogenation of Unsaturated Aldehydes: A Review. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04331] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaocheng Lan
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Wang X, Liang X, Geng P, Li Q. Recent Advances in Selective Hydrogenation of Cinnamaldehyde over Supported Metal-Based Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05031] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaofeng Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xinhua Liang
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Peng Geng
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Qingbo Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
14
|
Zaarour M, Cazemier J, Ruiz-Martínez J. Recent developments in the control of selectivity in hydrogenation reactions by confined metal functionalities. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01709d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Confining metal active species in the voids of porous solid matrices such as zeolites, metal–organic frameworks (MOFs), and carbon nanotubes (CNTs) can bring fascinating key advantages in the field of selective hydrogenation reactions.
Collapse
Affiliation(s)
- Moussa Zaarour
- King Abdullah University of Science and Technology
- KAUST Catalysis Center (KCC)
- Catalysis Nanomaterials and Spectroscopy (CNS)
- Thuwal 23955
- Saudi Arabia
| | - Jurjen Cazemier
- King Abdullah University of Science and Technology
- KAUST Catalysis Center (KCC)
- Catalysis Nanomaterials and Spectroscopy (CNS)
- Thuwal 23955
- Saudi Arabia
| | - Javier Ruiz-Martínez
- King Abdullah University of Science and Technology
- KAUST Catalysis Center (KCC)
- Catalysis Nanomaterials and Spectroscopy (CNS)
- Thuwal 23955
- Saudi Arabia
| |
Collapse
|
15
|
Gerber IC, Serp P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem Rev 2019; 120:1250-1349. [DOI: 10.1021/acs.chemrev.9b00209] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iann C. Gerber
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Philippe Serp
- LCC-CNRS, Université de Toulouse, UPR 8241 CNRS, INPT, 31400 Toulouse, France
| |
Collapse
|
16
|
Sun P, Huang K, Wang X, Yu J, Diat O, Liu H. Confined Complexation Reaction of Metal Ions with a Lipophilic Surfactant at the Water/Air Interface: A New Understanding Based on Surface Experiments and Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4548-4556. [PMID: 30839220 DOI: 10.1021/acs.langmuir.9b00452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the fundamentals of confined chemical reaction was an important subject in various heterogeneous physicochemical processes. Here, we investigated the orientation behavior of an amphiphilic ligand, the tri- n-octylphosphine oxide (TOPO), in a compressed monolayer at the air/water interface and its impact on the complexation reactivity of TOPO molecules with chromate ions at the interface. The analysis of sum frequency generation and polarization modulation infrared reflection absorption spectroscopy experiments combined with surface pressure measurements reveals a significant dependence of the adsorption rate and saturated concentration of chromate ions on the orientation of TOPO molecules during the increase of the surface pressure. In parallel, the analysis of molecular dynamics simulations indicates that the interaction energy between TOPO molecules and chromate ions is strongly sensitive to the orientation of TOPO molecules confined at the water/air interface. The present work provides a novel insight into the unique chemical reactivity of molecules in a confined microenvironment, and it provides a basis for further progresses in improving chemical reactivity and selectivity of molecules in a confined environment by regulating confinement of molecules.
Collapse
Affiliation(s)
- Pan Sun
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Kun Huang
- School of Metallurgical and Ecological Engineering , University of Science and Technology Beijing , 30 Xueyuan Road , Haidian, Beijing 100083 , P. R. China
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Xinping Wang
- Department of Chemistry , Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University , Hangzhou 310018 , P. R. China
| | - Jiemiao Yu
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Olivier Diat
- Institut De Chimie Séparative de Marcoule, UMR 5257 (CEA, CNRS, UM, ENSCM) , BP 17171, 30207 Bagnols-sur-Cèze , France
| | - Huizhou Liu
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
17
|
Zeng L, Yan H, Zeng Y, Li Y, Zhang Z, Liu Z, Liu Z. Precious metal nanoparticles supported on KOH pretreated activated carbon under microwave radiation as a catalyst for selective hydrogenation of cinnamaldehyde. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li‐Hui Zeng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
- Kaili Catalyst & New Materials Co., Ltd. Xi'an 710201 China
| | - Hao‐Xiang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Yong‐Kang Zeng
- Kaili Catalyst & New Materials Co., Ltd. Xi'an 710201 China
| | - Yue‐Feng Li
- Kaili Catalyst & New Materials Co., Ltd. Xi'an 710201 China
| | | | - Zhong‐Wen Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - Zhao‐Tie Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 China
- College of Chemistry and Chemical EngineeringShaanxi University of Science and Technology Xi'an 710021 China
| |
Collapse
|
18
|
Pei A, Ruan L, Liao J, Zhang H, Wang J, Yang K, Liu Z, Zhu L, Chen BH. Preparation of a PdRuNi/C tri-metallic nanocatalyst and its excellent catalytic performance for ethylbenzene hydrogenation reaction. NEW J CHEM 2019. [DOI: 10.1039/c9nj04083h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PdRuNi/C with the nanostructure of PdRu-on-Ni/Ni(OH)2 NPs exhibited excellent catalytic performance for ethylbenzene hydrogenation due to the nano-synergistic effect.
Collapse
Affiliation(s)
- An Pei
- College of Chemistry and Chemical Engineering
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Luna Ruan
- College of Chemistry and Chemical Engineering
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Jianhua Liao
- School of Pharmaceutical Sciences
- Gannan Medical University
- Ganzhou 341000
- China
| | - Huan Zhang
- College of Chemistry and Chemical Engineering
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Jiexiang Wang
- Fine Chemical Industry Research Institute
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Kai Yang
- College of Chemistry and Chemical Engineering
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Zhiping Liu
- College of Chemistry and Chemical Engineering
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Lihua Zhu
- College of Chemistry and Chemical Engineering
- Faculty of Materials Metallurgy and Chemistry
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Bing Hui Chen
- Department of Chemical and Biochemical Engineering
- National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
19
|
Wang F, Bi Y, Chen N, Hu K, Wei X. In-situ synthesis of Ni nanoparticles confined within SiO2 networks with interparticle mesopores with enhanced selectivity for cinnamaldehyde hydrogenation. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|