1
|
Wang X, Ding Y, Yu X, Dai P, Bai Z, Wu M, Jiang T. Photo-Stimulated Zn-based Batteries: Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402310. [PMID: 38726774 DOI: 10.1002/smll.202402310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/22/2024] [Indexed: 10/04/2024]
Abstract
Solar energy, as a renewable energy source, dominates the vast majority of human energy, which can be harvested and converted by photovoltaic solar cells. However, the intermittent availability of solar energy restricts the actual utilization circumstances of solar cells. Integrating photo-responsive electrodes into an energy storage device emerges as a dependable and executable strategy, fostering the creation of photo-stimulated batteries that seamlessly amalgamate the process of solar energy collection, conversion, and storage in one system. Endowed by virtues such as cost-effectiveness, facile manufacturing, safety, and environmental friendliness, photo-stimulated Zn-based batteries have attracted considerable attention. The progress report furnishes a brief overview, summarizing various photo-stimulated Zn-based batteries. Their configurations, operational principles, advancements, and the intricate engineering of photoelectrode designs are introduced, respectively. Through rigorous architectural design, photo-stimulated Zn-based batteries exhibit the ability to initiate charging by saving electricity usage, and in certain instances, even without the need for external electrical grids under illumination. Furthermore, the compensation of solar energy can be explored to improve the output electric energy. At last, opportunities and challenges toward photo-stimulated Zn-based batteries in the process of development are proposed and discussed in the hope of expanding their application scenarios and accelerating the commercialization progress.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Yi Ding
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui, 230601, China
| | - Xinxin Yu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Peng Dai
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Zhiman Bai
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Mingzai Wu
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| | - Tongtong Jiang
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
2
|
Chen C, Zhao Y, Lei T, Yang D, Zhou Y, Zeng J, Xie R, Hu W, Dong F. Photocatalytic mechanism conversion of titanium dioxide induced via surface interface coordination. CHEMOSPHERE 2022; 309:136745. [PMID: 36209860 DOI: 10.1016/j.chemosphere.2022.136745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic removal of organic pollutants is a promising pollution treatment technology from the aspect of carbon neutrality. The complex diversity of actual wastewater components, as opposed to single-component systems, can significantly affect photocatalytic mechanisms. In this study, complex pollutant systems were created using various coordinating agents, and the effects of P25 on the photocatalytic removal of methyl orange (MO) in these systems and corresponding photocatalytic mechanism were investigated. The results show that photocatalytic removal of MO by P25 using ligands is significantly more efficient, especial removal of MO by the EDTA-P25 (P-E2.5) coordination system resulted dramatically improved MO removal (97.4% versus 12.3% achieved by pure P25 after 15 min), with the reaction rate improved 23.8-fold. Theoretical calculations show that the effective coordination bonds formed by the coordinating agent and Ti atoms reduce the adsorption energy of P25 for MO. In addition, introduction of the coordinating agent EDTA reduces the transition state energy during the MO degradation process and greatly accelerates the reaction rate, and the conduction band position of the EDTA-P25 coordination system shifts to a more negative potential, which induces to the generation of •O2- for effective MO degradation.
Collapse
Affiliation(s)
- Cheng Chen
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, PR China; School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Yu Zhao
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, PR China; School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Ting Lei
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, PR China; School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Dingming Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Yanfang Zhou
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Jiawei Zeng
- National Health Commission Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621010, PR China
| | - Ruzhen Xie
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Wenyuan Hu
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, PR China; School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education of China, Mianyang, 621010, PR China.
| |
Collapse
|
3
|
Chen P, Wang M, Li G, Jiang H, Rezaeifard A, Jafarpour M, Wu G, Rao B. Construction of ZIF-67-On-UiO-66 Catalysts as a Platform for Efficient Overall Water Splitting. Inorg Chem 2022; 61:18424-18433. [DOI: 10.1021/acs.inorgchem.2c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pinghua Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, P. R. China
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Mengxue Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, P. R. China
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Guifang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, P. R. China
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Hualin Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, P. R. China
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Abdolreza Rezaeifard
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Maasoumeh Jafarpour
- Catalysis Research Laboratory, Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Guanghui Wu
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Bingying Rao
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| |
Collapse
|
4
|
Li Y, Xiao G, Li F, Guo Y, Chen C, Chen C, Li R, Yang Z. A novel H-TiO2/gel co-stabilized three-dimensional network synergistic fire-retardant foam gel for coal-pile. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Solvothermal fabrication of Bi2MoO6 nanocrystals with tunable oxygen vacancies and excellent photocatalytic oxidation performance in quinoline production and antibiotics degradation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63876-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Oxygen-vacancy-rich phenanthroline/TiO2 nanocomposites: An integrated adsorption, detection and photocatalytic material for complex pollutants remediation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Huang H, Zhang T, Cai X, Guo Z, Fan S, Zhang Y, Lin C, Gan T, Hu H, Huang Z. In Situ One-Pot Synthesis of C-Decorated and Cl-Doped Sea-Urchin-like Rutile Titanium Dioxide with Highly Efficient Visible-Light Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60337-60350. [PMID: 34889099 DOI: 10.1021/acsami.1c17081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Titanium dioxide (TiO2) that offers high light-harvesting capacity and efficient charge separation holds great promise in photocatalysis. In this work, an in situ one-pot hydrothermal synthesis was explored to prepare a C-decorated and Cl-doped sea-urchin-like rutile TiO2 (Cl-TiO2/C). The growth of sea-urchin-like 3D hierarchical nanostructures was governed by a mechanism of nucleation and nuclei growth-dissolution-recrystallization growth from time-dependent morphology evolution. The crystal morphology and the content of Cl and C could be controlled by the volume ratio of HCl to TBOT. Systematic studies indicated that the 0.4Cl-TiO2/C sample (the volume ratio of HCl to TBOT was 0.4) exhibited the highest visible-light photocatalytic activity for the degradation of rhodamine B, with kinetic rate constant (k) of 0.0221 min-1, being 6.5 and 3.75 times higher than that of TiO2 and Cl-TiO2. The enhanced photocatalytic performance could be attributed to the high charge separation and transfer efficiency induced by Cl-doping and C decoration and the excellent light-harvesting capacity caused by its sea-urchin-like nanostructure. Moreover, the 0.4Cl-TiO2/C sample exhibited good reusability and excellent structural stability for five cycles. This facile one-pot approach provides new insight for the preparation of a TiO2-based photocatalyst with excellent photocatalytic performance for potential application in practical wastewater treatment.
Collapse
Affiliation(s)
- Hongmiao Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Tongtong Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiunan Cai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhanjing Guo
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Songlin Fan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Cuiwu Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
8
|
Li G, Chen P, Jiang W, Wang M, Jiang H. Amorphous Yolk-Shelled ZIF-67@Co 3(PO 4) 2 as Nonprecious Bifunctional Catalysts for Boosting Overall Water Splitting. Inorg Chem 2021; 60:14880-14891. [PMID: 34505763 DOI: 10.1021/acs.inorgchem.1c02254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It is challenging to generate inexpensive and noble metal-free catalysts for efficient overall water splitting (OWS). To achieve this goal, suitable tuning of the structure and composition of electrocatalytic materials is a promising approach that has attracted much attention in recent years. Herein, novel hybrid amorphous ZIF-67@Co3(PO4)2 electrocatalysts with yolk-shell structures were prepared using a reflux method. It is demonstrated that yolk-shelled ZIF-67@Co3(PO4)2 is not only an active catalyst for the hydrogen evolution reaction (HER) but also an efficient catalyst for the oxygen evolution reaction (OER). The optimized composite electrode showed superior performance with low overpotentials of 73 and 334 mV @ 10 mA·cm-2 toward HER and OER, respectively, and a low potential of 1.62 V @ 10 mA·cm-2 and 1.66 V @ 30 mA·cm-2 in a practical OWS test under alkaline conditions. N-O bonds were formed to connect the two components of ZIF-67 and Co3(PO4)2 in the composite ZIF-67@Co3(PO4)2, which indicates that the two components are synergistic but not isolated, and this synergistic effect may be one of the important reasons to boost the oxygen and hydrogen evolution performances of the hybrid. Based on experimental data, the high electrocatalytic performance was inferred to be related to the unique structure of ZIF-67, tuning the ability of Co3(PO4)2 and synergism between ZIF-67 and Co3(PO4)2. The preparation strategy reported herein can be extended for the rational design and synthesis of cheap, active, and long-lasting bifunctional electrocatalysts for OWS and other renewable energy devices.
Collapse
Affiliation(s)
- Guifang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Pinghua Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Wei Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Mengxue Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Hualin Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
9
|
Intaphong P, Phuruangrat A, Akhbari K, Sakhon T, Thongtem T, Thongtem S. Hierarchical ZnO nanostructure flowers loaded with AgI nanoparticles for photodegradation of methylene blue under UV visible radiation. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1952240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Prakasit Intaphong
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Anukorn Phuruangrat
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Thawatchai Sakhon
- Electron Microscopy Research and Service Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Titipun Thongtem
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Somchai Thongtem
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Gai H, Wang H, Liu L, Feng B, Xiao M, Tang Y, Qu X, Song H, Huang T. Potassium and iodide codoped mesoporous titanium dioxide for enhancing photocatalytic degradation of phenolic compounds. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Han C, Su P, Tan B, Ma X, Lv H, Huang C, Wang P, Tong Z, Li G, Huang Y, Liu Z. Defective ultra-thin two-dimensional g-C3N4 photocatalyst for enhanced photocatalytic H2 evolution activity. J Colloid Interface Sci 2021; 581:159-166. [DOI: 10.1016/j.jcis.2020.07.119] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 11/29/2022]
|
12
|
Ti3+ doped V2O5/TiO2 catalyst for efficient selective catalytic reduction of NOx with NH3. J Colloid Interface Sci 2021; 581:76-83. [DOI: 10.1016/j.jcis.2020.07.131] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 01/27/2023]
|
13
|
Han B, Guo Y, Huang Y, Xi W, Xu J, Luo J, Qi H, Ren Y, Liu X, Qiao B, Zhang T. Strong Metal-Support Interactions between Pt Single Atoms and TiO 2. Angew Chem Int Ed Engl 2020; 59:11824-11829. [PMID: 32302045 DOI: 10.1002/anie.202003208] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/05/2020] [Indexed: 11/09/2022]
Abstract
Strong metal-support interaction (SMSI) has gained great attention in the field of heterogeneous catalysis. However, whether single-atom catalysts can exhibit SMSI remains unknown. Here, we demonstrate that SMSI can occur on TiO2 -supported Pt single atoms but at a much higher reduction temperature than that for Pt nanoparticles (NPs). Pt single atoms involved in SMSI are not covered by the TiO2 support nor do they sink into its subsurface. The suppression of CO adsorption on Pt single atoms stems from coordination saturation (18-electron rule) rather than the physical coverage of Pt atoms by the support. Based on the new finding it is revealed that single atoms are the true active sites in the hydrogenation of 3-nitrostyrene, while Pt NPs barely contribute to the activity since the NP sites are selectively encapsulated. The findings in this work provide a new approach to study the active sites by tuning SMSI.
Collapse
Affiliation(s)
- Bing Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Xi
- Center for Electron Microscopy, Institute for New Energy Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Jie Xu
- Center for Electron Microscopy, Institute for New Energy Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Luo
- Center for Electron Microscopy, Institute for New Energy Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Haifeng Qi
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujing Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Han B, Guo Y, Huang Y, Xi W, Xu J, Luo J, Qi H, Ren Y, Liu X, Qiao B, Zhang T. Strong Metal–Support Interactions between Pt Single Atoms and TiO
2. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003208] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bing Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Xi
- Center for Electron Microscopy Institute for New Energy Materials Tianjin University of Technology Tianjin 300384 China
| | - Jie Xu
- Center for Electron Microscopy Institute for New Energy Materials Tianjin University of Technology Tianjin 300384 China
| | - Jun Luo
- Center for Electron Microscopy Institute for New Energy Materials Tianjin University of Technology Tianjin 300384 China
| | - Haifeng Qi
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yujing Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
15
|
Niu P, Wu G, Chen P, Zheng H, Cao Q, Jiang H. Optimization of Boron Doped TiO 2 as an Efficient Visible Light-Driven Photocatalyst for Organic Dye Degradation With High Reusability. Front Chem 2020; 8:172. [PMID: 32232026 PMCID: PMC7082229 DOI: 10.3389/fchem.2020.00172] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 11/13/2022] Open
Abstract
No visible light activity is the bottle neck for wide application of TiO2, and Boron doping is one of the effective way to broaden the adsorption edge of TiO2. In this study, several Boron doped TiO2 materials were prepared via a facile co-precipitation and calcination process. The B doping amounts were optimized by the degradation of rhodamine B (Rh B) under visible light irradiation, which indicated that when the mass fraction of boron is 6% (denoted as 6B-TiO2), the boron doped TiO2 materials exhibited the highest activity. In order to investigate the enhanced mechanism, the difference between B-doped TiO2 and bare TiO2 including visible light harvesting abilities, separation efficiencies of photo-generated electron-hole pairs, photo-induced electrons generation abilities, photo-induced charges transferring speed were studied and compared in details. h+ and ·O2- were determined to be the two main responsible active species in the photocatalytic oxidation process. Besides the high degradation efficiency, 6B-TiO2 also exhibited high reusability in the photocatalysis, which could be reused at least 5 cycles with almost no active reduction. The results indicate that 6B-TiO2 has high photocatalytic degradation ability toward organic dye of rhodamine B under visible light irradiation, which is a highly potential photocatalyst to cope with organic pollution.
Collapse
Affiliation(s)
- Pingping Niu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang, China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Guanghui Wu
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Pinghua Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang, China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Huitao Zheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang, China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Qun Cao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang, China
| | - Hualin Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang, China.,College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| |
Collapse
|
16
|
|
17
|
Shen R, Xie J, Xiang Q, Chen X, Jiang J, Li X. Ni-based photocatalytic H2-production cocatalysts2. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63294-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Cheng Y, He L, Xia G, Ren C, Wang Z. Nanostructured g-C3N4/AgI composites assembled by AgI nanoparticles-decorated g-C3N4 nanosheets for effective and mild photooxidation reaction. NEW J CHEM 2019. [DOI: 10.1039/c9nj02725d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AgI nanoparticles-decorated g-C3N4 nanosheets with enhanced visible-light photocatalytic activity for the mild photooxidation of 1,4-DHP into its pyridine derivatives.
Collapse
Affiliation(s)
- Ying Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University
- Nanchong
- P. R. China
| | - Lingling He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University
- Nanchong
- P. R. China
| | - Guangqiang Xia
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University
- Nanchong
- P. R. China
| | - Chunguang Ren
- Yantai Institute of Materia Medica, 39 Keji Road, Gaoxin District
- Yantai 264000
- P. R. China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University
- Nanchong
- P. R. China
| |
Collapse
|
19
|
Ruan Z, Liu G, Shu J, Ren C, Wang Z. Green synthesis of a AgCl@AgI nanocomposite using Laminaria japonica extract and its application as a visible-light-driven photocatalyst. RSC Adv 2019; 9:5858-5864. [PMID: 35515915 PMCID: PMC9060802 DOI: 10.1039/c8ra09263j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
A AgCl@AgI composite photocatalyst was greenly synthesized using Laminaria japonica extract as the source of halogen anions, and characterized by XRD, SEM, TEM and XPS techniques. The photocatalytic activity and photochemical stability of the AgCl@AgI were investigated by the photodegradation of methyl orange (MO) azo dye under visible light illumination (λ > 420 nm). The AgCl@AgI composite showed good photochemical stability and much higher photocatalytic activity than that of single AgCl and AgI. Mechanism studies showed that the main active species are photoinduced holes (h+) and superoxide anion radicals (·O2−). Finally, a plausible mechanism for the separation of photoinduced charge carriers was proposed. A AgCl@AgI nanocomposite was greenly synthesized with Laminaria japonica extract and applied as a visible-light-driven photocatalyst for organic pollutant degradation.![]()
Collapse
Affiliation(s)
- Zhongyu Ruan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong
- P. R. China
| | - Guihong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong
- P. R. China
| | - Jinxia Shu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong
- P. R. China
| | - Chunguang Ren
- Yantai Institute of Materia Medica
- Yantai 264000
- P. R. China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong
- P. R. China
| |
Collapse
|
20
|
Qin Q, Shi Q, Meng J, Wan J, Hu Z. Visible-Light Response and High-Efficiency Photocatalytic Elimination of Polycyclic Organic Pollutants of Layer-By-Layer Assembled Ternary Nanotubular Catalysts. ChemistrySelect 2018. [DOI: 10.1002/slct.201801806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qingyuan Qin
- National Engineering Lab of Textile Fiber Materials & Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 PRChina
| | - Qingdan Shi
- National Engineering Lab of Textile Fiber Materials & Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 PRChina
| | - Junjing Meng
- National Engineering Lab of Textile Fiber Materials & Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 PRChina
| | - Junmin Wan
- National Engineering Lab of Textile Fiber Materials & Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 PRChina
- State Key Laboratory of advanced Textiles Materials and Manufacture Technology; MOE; Zhejiang Sci-Tech University; Hangzhou 310018 PR China
| | - Zhiwen Hu
- National Engineering Lab of Textile Fiber Materials & Processing Technology; Zhejiang Sci-Tech University; Hangzhou 310018 PRChina
| |
Collapse
|