1
|
Islas-Rodriguez N, Muñoz R, Rodriguez JA, Vazquez-Garcia RA, Reyes M. Integration of ternary I-III-VI quantum dots in light-emitting diodes. Front Chem 2023; 11:1106778. [PMID: 37035113 PMCID: PMC10076594 DOI: 10.3389/fchem.2023.1106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Ternary I-III-VI quantum dots (TQDs) are semiconductor nanomaterials that have been gradually incorporated in the fabrication of light-emitting diodes (LEDs) over the last 10 years due to their physicochemical and photoluminescence properties, such as adequate quantum yield values, tunable wavelength emission, and easy synthesis strategies, but mainly because of their low toxicity that allows them to be excellent candidates to compete with conventional Cd-Pb-based QDs. This review addresses the different strategies to obtain TQDs and how synthesis conditions influence their physicochemical properties, followed by the LEDs parameters achieved using TQDs. The second part of the review summarizes how TQDs are integrated into LEDs and white light-emitting diodes (WLEDs). Furthermore, an insight into the state-of-the-art LEDs development using TQDs, including its advantages and disadvantages and the challenges to overcome, is presented at the end of the review.
Collapse
Affiliation(s)
- Nery Islas-Rodriguez
- Universidad Autonoma del Estado de Hidalgo (UAEH). Area Academica de Ciencias de La Tierra y Materiales, Hgo, Mexico
| | - Raybel Muñoz
- Universidad Autonoma del Estado de Hidalgo (UAEH). Area Academica de Quimica, Hidalgo, Mineral de la Reforma, Mexico
| | - Jose A. Rodriguez
- Universidad Autonoma del Estado de Hidalgo (UAEH). Area Academica de Quimica, Hidalgo, Mineral de la Reforma, Mexico
| | - Rosa A. Vazquez-Garcia
- Universidad Autonoma del Estado de Hidalgo (UAEH). Area Academica de Ciencias de La Tierra y Materiales, Hgo, Mexico
| | - Martin Reyes
- Universidad Autonoma del Estado de Hidalgo (UAEH). Area Academica de Ciencias de La Tierra y Materiales, Hgo, Mexico
- *Correspondence: Martin Reyes,
| |
Collapse
|
2
|
Pham XN, Vu VT, Nguyen HVT, Nguyen TTB, Doan HV. Designing a novel heterostructure AgInS 2@MIL-101(Cr) photocatalyst from PET plastic waste for tetracycline degradation. NANOSCALE ADVANCES 2022; 4:3600-3608. [PMID: 36134359 PMCID: PMC9400168 DOI: 10.1039/d2na00371f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Semiconductor-containing porous materials with a well-defined structure could be unique scaffolds for carrying out selective organic transformations driven by visible light. We herein introduce for the first time a heterostructure of silver indium sulfide (AgInS2) ternary chalcogenide and a highly porous MIL-101(Cr) metal-organic framework (MOF) synthesised from polyethylene terephthalate plastic waste. Our results demonstrate that AgInS2 nanoparticles were uniformly attached to each lattice plane of the octahedral MIL-101(Cr) structure, resulting in a nanocomposite with a high distribution of semiconductors in a porous media. We also demonstrate that the nanocomposite with up to 40% of AgInS2 doping exhibited excellent catalytic activity for tetracycline degradation under visible light irradiation (∼99% tetracycline degraded after 4 h) and predominantly maintained its performance after five cycles. These results could promote a new material circularity pathway to develop new semiconductors that can be used to protect water from further pollution.
Collapse
Affiliation(s)
- Xuan N Pham
- Department of Chemical Engineering, Hanoi University of Mining and Geology 18 Pho Vien, Duc Thang, Bac Tu Liem Hanoi Vietnam
| | - Van-Tai Vu
- Department of Chemical Engineering, Hanoi University of Mining and Geology 18 Pho Vien, Duc Thang, Bac Tu Liem Hanoi Vietnam
| | - Hong Van T Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi Vietnam
- Institute of Environment, Vietnam Maritime University 484 Lach Tray, Le Chan Haiphong Vietnam
| | - T-Thanh-Bao Nguyen
- Institute of Physics, Vietnam Academy of Science and Technology 18C Hoang Quoc Viet Hanoi Vietnam
| | - Huan V Doan
- Department of Chemical Engineering, Hanoi University of Mining and Geology 18 Pho Vien, Duc Thang, Bac Tu Liem Hanoi Vietnam
- School of Chemistry, University of Bristol Bristol BS8 1TS UK
| |
Collapse
|
3
|
Zhu C, Li J, Chai Y, Zhang Y, Li Y, Zhang X, Liu J, Li Y. Synergistic Cr(VI) Reduction and Chloramphenicol Degradation by the Visible-Light-Induced Photocatalysis of CuInS2: Performance and Reaction Mechanism. Front Chem 2022; 10:964008. [PMID: 35910735 PMCID: PMC9328383 DOI: 10.3389/fchem.2022.964008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Despite significant scientific efforts in the field of water treatment, pollution of drinking water by toxic metal ions and synthetic organic compounds is becoming an increasing problem. The photocatalytic capabilities of CuInS2 nanoparticles were examined in this study for both the degradation of chloramphenicol (CAP) and the reduction of Cr(VI). CuInS2 nanoparticles were produced using a straightforward solvothermal approach and subsequently characterized by many analysis techniques. Simultaneous photocatalytic Cr(VI) reduction and CAP oxidation by the CuInS2 nanoparticles under visible-light demonstrated that lower pH and sufficient dissolved oxygen favored both Cr(VI) reduction and CAP oxidation. On the basis of active species quenching experiments, the possible photocatalytic mechanisms for Cr(VI) conversion with synchronous CAP degradation were proposed. Additionally, the CuInS2 retains a high rate of mixed pollutant removal after five runs. This work shows that organic contaminants and heavy metal ions can be treated concurrently by the visible-light-induced photocatalysis of CuInS2.
Collapse
Affiliation(s)
- Chaosheng Zhu
- Zhoukou Key Laboratory of Environmental Pollution Prevention and Remediation, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, China
- *Correspondence: Chaosheng Zhu, ; Yongcai Zhang,
| | - Jingyu Li
- Zhoukou Key Laboratory of Environmental Pollution Prevention and Remediation, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, China
| | - Yukun Chai
- Zhoukou Key Laboratory of Environmental Pollution Prevention and Remediation, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
- *Correspondence: Chaosheng Zhu, ; Yongcai Zhang,
| | - Yunlin Li
- Zhoukou Key Laboratory of Environmental Pollution Prevention and Remediation, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, China
| | - Xiangli Zhang
- College of Chinese Language and Literature, Zhoukou Normal University, Zhoukou, China
| | - Jin Liu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou, China
| | - Yan Li
- Zhoukou Key Laboratory of Environmental Pollution Prevention and Remediation, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, China
| |
Collapse
|
4
|
Ponomaryova TS, Novikova AS, Abramova AM, Goryacheva OA, Drozd DD, Strokin PD, Goryacheva IY. New-Generation Low-Toxic I–III–VI2 Quantum Dots in Chemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Maji SK. Luminescence-Tunable ZnS-AgInS 2 Nanocrystals for Cancer Cell Imaging and Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2022; 5:1230-1238. [PMID: 35176849 DOI: 10.1021/acsabm.1c01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A highly luminescent I-III-VI group of semiconductor nanocrystals (NCs) has attracted considerable attention for applications in biomedical engineering and design of novel optoelectronic devices. In this work, high quality ZnS-AgInS2 (ZAIS) solid solution NCs were synthesized by thermal decomposition of a organometallic diethyldithiocarbamate precursor complex of (AgIn)xZn2(1-x) (S2CN(C2H5)2)4 in the presence of specific stabilizing and structure directing agents. By changing the composition of the precursor complex (value of x), the structure and optical property could easily be adjustable, thus leading to the formation of nanowire, nanorod, and tetrapod-like NCs and highly luminescent green to yellow to red color tunable NCs. The ZAIS NCs were further transferred to aqueous medium by 3-mercaptopropionic acid (MPA) capping without losing any optical properties. The color-tunable, water-soluble, and biocompatible ZAIS NCs were utilized for the in vitro cellular imaging of human cervical cancer cells (HeLa cells) and showed intense localization in the cell cytoplasm after 6 h of incubation. In addition, the inherent photocatalytic property of ZAIS NCs under light illumination showed promising photodynamic therapy of cancer cells, and thus, ZAIS NCs could be a promising candidate for future biomedical applications.
Collapse
Affiliation(s)
- Swarup Kumar Maji
- Department of Chemistry, Khatra Adibasi Mahavidyalaya, Khatra 722140 West Bengal, India
| |
Collapse
|
6
|
Madkour M, Abdelmonem Y, Qazi UY, Javaid R, Vadivel S. Efficient Cr(vi) photoreduction under natural solar irradiation using a novel step-scheme ZnS/SnIn 4S 8 nanoheterostructured photocatalysts. RSC Adv 2021; 11:29433-29440. [PMID: 35492066 PMCID: PMC9040655 DOI: 10.1039/d1ra04649g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Removal of heavy metal pollutants from water is a challenge to water security and the environment. Therefore, in this work, multinary chalcogenide based nanoheterostructures such as ZnS/SnIn4S8 nanoheterostructure with different loading amounts were prepared. The prepared nanoheterostructures were utilized as photocatalysts for chromium (Cr(vi)) photoreduction. The prepared nanoheterostructures were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-Vis spectroscopy, dynamic light scattering (DLS), and X-ray photoelectron spectroscopy (XPS) and BET measurements. The absorption spectra of the prepared nanoheterostructures revealed that they are widely absorbed in the visible range with bandgap values 2.4–3.5 eV. The photocatalytic activities of prepared nanoheterostructures were studied toward the photoreduction of heavy metal, chromium (Cr(vi)), under irradiation of natural solar light. The ZnS/SnIn4S8 (with ZnS molar ratio 20%) nanoheterostructures results showed a high photocatalytic activity (92.3%) after 120 min which could be attributed to its enhanced charge carrier separation with respect to the bare ZnS and SnIn4S8 NPs. Also, the optoelectronic, valence-band XPS and electrochemical properties of the investigated photocatalysts were studied and the results revealed that the photocatalysts behave the step-scheme mechanism. The recyclability tests revealed a beneficial role of the surface charge in efficient regeneration of the photocatalysts for repeated use. The Cr(vi) photoreduction tests demonstrated an improved photocatalytic activity of SIS and 2Z-SIS to be 61.0% and 92.3% respectively after 120 min. The results indicated the photocatalyst's capability under sun light, allowing for its industrial use.![]()
Collapse
Affiliation(s)
- Metwally Madkour
- Chemistry Department, Faculty of Science, Kuwait University P. O. Box 5969, Safat 13060 Kuwai
| | - Yasser Abdelmonem
- Chemistry Department, Faculty of Science, Menoufia University 32511 Shebin El-Kom Egypt
| | - Umair Yaqub Qazi
- Department of Chemistry, College of Science, University of Hafr Al Batin P. O Box 1803 Hafr Al Batin 39524 Saudi Arabia
| | - Rahat Javaid
- Renewable Energy Research Center, Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, AIST 2-2-9 Machiikedai Koriyama Fukushima 963-0298 Japan
| | - S Vadivel
- Department of Chemistry, PSG College of Technology Coimbatore-641004 India
| |
Collapse
|
7
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
8
|
Huang X, Huang Y, Yan F, Xue X, Zhang K, Cai P, Zhang X, Zhang X. Constructing defect-related subband in silver indium sulfide QDs via pH-dependent oriented aggregation for boosting photocatalytic hydrogen evolution. J Colloid Interface Sci 2021; 593:222-230. [PMID: 33744532 DOI: 10.1016/j.jcis.2021.02.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Surface engineering of quantum dots (QDs) plays critical roles in tailoring carriers' dynamics of I-III-VI QDs via the interplay of QDs in aggregates or assembly, thus influencing their photocatalytic activities. In this work, an aqueous synthesis and the followed pH tuned oriented assembly method are developed to prepare network-like aggregates, dispersion, or sheet-like assembly of GSH-capped Silver Indium Sulfide (AIS). FTIR, DLS, and HRTEM investigation revealed that surface protonation or deprotonation of QDs occurred at pH < 6 or pH > 12 favors the formation of network-like aggregates with various defects or sheet-like assembly with perfect crystal lattice, respectively, via the surface charge induced interaction among AIS QDs. Further UV-vis, steady and transient PL investigation confirm the narrowed band gaps and the prolonged PL lifetime of the acidic network-like aggregates. As a result, the optimized network-like aggregates (3.0-AIS) exhibits superior photocatalytic H2 evolution (PHE) rates (5.2 mmol·g-1·h-1), about 113 times that of alkaline sheet-like assembly (13.0-AIS) or 2.7 times higher than that of dispersed AIS QDs (AIS-8.0). The formation of defects and their roles in PHE mechanisms are discussed. This work is expected to give some new insight for designing efficient non-cadmium/non-novel metal I-III-VI photocatalysts for boosting PHE.
Collapse
Affiliation(s)
- Xiaoyan Huang
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| | - Yu Huang
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| | - Fengpo Yan
- Key Laboratory of Green Perovskites Application of Fujian Province Universities, Fujian Jiangxia University, Fuzhou 350108, People's Republic of China
| | - Xiaogang Xue
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
| | - Kexiang Zhang
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| | - Ping Cai
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| | - Xiaowen Zhang
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| | - Xiuyun Zhang
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
9
|
Sheng Y, Li S, Sun Y, Zhang R, Zhao X, Tan MC. Synthesis of deep red emitting Cu-In-Zn-Se/ZnSe quantum dots for dual-modal fluorescence and photoacoustic imaging. NANOTECHNOLOGY 2021; 32:085101. [PMID: 33181499 DOI: 10.1088/1361-6528/abc9e8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CuInSe2 quantum dots (QDs) are one of the most important Cd-free fluorescent probes; they usually exhibited low fluorescence intensity, suggesting that a considerable amount of absorbed photon energy was lost as heat. In this study we aimed to improve the fluorescence intensity of CuInSe2 QDs and investigate their photoacoustic (PA) signal resulting from the heat dissipation, which was previously rarely reported. Cu-In-Zn-Se/ZnSe QDs were synthesized by adopting two strategies of Zn doping and ZnSe shell growth. It was found that there was an upper limit for Zn concentration beyond which the fluorescence intensity began to decrease. In addition, a blue shift of the emission peak of Cu-In-Zn-Se/ZnSe QDs was observed at high concentrations of ZnSe precursor due to the diffusion of excessive Zn. To prepare the dual-modal fluorescence and PA imaging probe, poly(maleic anhydride-alt-1-octadecene) (PMAO) modified with polyethylene glycol (PEG) was coated on the QDs, which led to a slight reduction in fluorescence. Cellular labeling on HeLa cells was performed to demonstrate the utility of these probes for fluorescence imaging. We further studied the in vitro PA imaging capabilities of the Cu-In-Zn-Se/ZnSe/PMAO-g-PEG nanoparticles, which showed a distinct PA signal beyond 1.0 mg ml-1. The current work demonstrated that a moderate amount of Zn doping is necessary for enhancing fluorescence and there is a limit beyond which the fluorescence will be diminished. We also demonstrated the proof of concept that Cu-In-Zn-Se/ZnSe QDs are able to serve as a potential PA imaging contrast agent.
Collapse
Affiliation(s)
- Yang Sheng
- Jiangus Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, People's Republic of China
- Jiangsu Chenguang Paint Co., Ltd, Changzhou 213154, People's Republic of China
| | - Shuai Li
- Jiangus Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yixin Sun
- Jiangus Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Rong Zhang
- Jiangus Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Xinyu Zhao
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| |
Collapse
|
10
|
Visible-Light Driven Photocatalytic Degradation of Pirimicarb by Pt-Doped AgInS2 Nanoparticles. Catalysts 2020. [DOI: 10.3390/catal10080857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study describes the synthesis and characterization of Pt-doped AgInS2 nanoparticles and reports their prospective application as visible-light catalysts for photodegradation of frequently used pirimicarb insecticides, which pose serious health and environmental concerns. The nanomaterials were characterized by XRD, SEM, TEM, XPS, photoluminescence (PL), and UV–vis diffuse reflectance spectra (DRS). The presented photocatalytic method for water treatment from pirimicarb has the advantages of using visible light source without any costly additive such as H2O2 needed in other employed methods. The Pt-doped AgInS2 exhibited higher photocatalytic activities for pirimicarb degradation than undoped AgInS2. The 1.0 wt% Pt/AgInS2 photocatalyst exhibited the highest photodegradation rate, showing enhancement of 56% in comparison to the pure AgInS2 photocatalyst. The photodegradation rate was found to increase with increasing the catalyst dosage until reaching the optimal dosage of 1.0 g L−1. The pirimicarb degradation was significantly more efficient under acidic conditions, and the rates drastically dropped upon increasing the pH. The photocatalytic mechanism of Pt/AgInS2 composites and the main active species involved in the process were investigated. The mechanism of pirimicarb degradation was proposed via two different pathways, N-dealkylation and decarbamoylation. Lastly, the photocatalysts demonstrated remarkable stability and were reusable in three successive catalytic tests without compromising catalytic activities. The Pt/AgInS2 photocatalyst also exhibited efficiency and feasibility in pirimicarb removal from environmental lake and river water samples.
Collapse
|