1
|
Yang Q, Liu H, Lin Y, Su D, Tang Y, Chen L. Atomically Dispersed Metal Catalysts for the Conversion of CO 2 into High-Value C 2+ Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310912. [PMID: 38762777 DOI: 10.1002/adma.202310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The conversion of carbon dioxide (CO2) into value-added chemicals with two or more carbons (C2+) is a promising strategy that cannot only mitigate anthropogenic CO2 emissions but also reduce the excessive dependence on fossil feedstocks. In recent years, atomically dispersed metal catalysts (ADCs), including single-atom catalysts (SACs), dual-atom catalysts (DACs), and single-cluster catalysts (SCCs), emerged as attractive candidates for CO2 fixation reactions due to their unique properties, such as the maximum utilization of active sites, tunable electronic structure, the efficient elucidation of catalytic mechanism, etc. This review provides an overview of significant progress in the synthesis and characterization of ADCs utilized in photocatalytic, electrocatalytic, and thermocatalytic conversion of CO2 toward high-value C2+ compounds. To provide insights for designing efficient ADCs toward the C2+ chemical synthesis originating from CO2, the key factors that influence the catalytic activity and selectivity are highlighted. Finally, the relevant challenges and opportunities are discussed to inspire new ideas for the generation of CO2-based C2+ products over ADCs.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Desheng Su
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Yulong Tang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Peng X, Zhang M, Zhang T, Zhou Y, Ni J, Wang X, Jiang L. Single-atom and cluster catalysts for thermocatalytic ammonia synthesis at mild conditions. Chem Sci 2024; 15:5897-5915. [PMID: 38665515 PMCID: PMC11041362 DOI: 10.1039/d3sc06998b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Ammonia (NH3) is closely related to the fields of food and energy that humans depend on. The exploitation of advanced catalysts for NH3 synthesis has been a research hotspot for more than one hundred years. Previous studies have shown that the Ru B5 sites (step sites on the Ru (0001) surface uniquely arranged with five Ru atoms) and Fe C7 sites (iron atoms with seven nearest neighbors) over nanoparticle catalysts are highly reactive for N2-to-NH3 conversion. In recent years, single-atom and cluster catalysts, where the B5 sites and C7 sites are absent, have emerged as promising catalysts for efficient NH3 synthesis. In this review, we focus on the recent advances in single-atom and cluster catalysts, including single-atom catalysts (SACs), single-cluster catalysts (SCCs), and bimetallic-cluster catalysts (BCCs), for thermocatalytic NH3 synthesis at mild conditions. In addition, we discussed and summarized the unique structural properties and reaction performance as well as reaction mechanisms over single-atom and cluster catalysts in comparison with traditional nanoparticle catalysts. Finally, the challenges and prospects in the rational design of efficient single-atom and cluster catalysts for NH3 synthesis were provided.
Collapse
Affiliation(s)
- Xuanbei Peng
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
- Qingyuan Innovat Lab Quanzhou Fujian 362801 China
| | - Mingyuan Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
| | - Tianhua Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
| | - Yanliang Zhou
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
- Qingyuan Innovat Lab Quanzhou Fujian 362801 China
| | - Jun Ni
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
| | - Xiuyun Wang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
- Qingyuan Innovat Lab Quanzhou Fujian 362801 China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University Fuzhou Fujian 350002 China
- Qingyuan Innovat Lab Quanzhou Fujian 362801 China
| |
Collapse
|
3
|
Song JY, Chen X, Wang YM, Luo X, Zhang TE, Ning GH, Li D. Tuning the Catalytic Activity of Covalent Metal-Organic Frameworks for CO 2 Cycloaddition Reactions. Chem Asian J 2023; 18:e202300857. [PMID: 37927167 DOI: 10.1002/asia.202300857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/18/2023] [Indexed: 11/07/2023]
Abstract
The development of efficient, recyclable and low-cost heterogeneous catalysts for conversion of carbon dioxide (CO2 ) into epoxides is highly desired, yet remain a challenge. Herein, we have prepared three two-dimensional (2D) copper(I) cyclic trinuclear units (Cu(I)-CTUs) based covalent metal-organic frameworks (CMOFs), namely JNM-13, JNM-14, and JNM-15, via a one-pot reaction by combination of coordination and dynamic covalent chemistry. Among them, JNM-15 contained the highest density of copper catalytic sites, and exhibited the highest capacity for adsorption of CO2 . More interestingly, JNM-15 delivered the highest catalytic activity for cycloaddition of CO2 to epoxides with good yields (up to 99 %), good substrate compatibility (11 examples) and reusability (four catalytic cycles) under mild condition.
Collapse
Affiliation(s)
- Jing-Yi Song
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xu Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yu-Mei Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiao Luo
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Tian-E Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
4
|
Chen Y, Chen L, Li Y, Shen K. Metal-Organic Frameworks as a New Platform to Construct Ordered Mesoporous Ce-Based Oxides for Efficient CO 2 Fixation under Ambient Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303235. [PMID: 37269208 DOI: 10.1002/smll.202303235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Metal-organic frameworks (MOFs) are proved to be good precursors to derive various nanomaterials with desirable functions, but so far the controllable synthesis of ordered mesoporous derivatives from MOFs has not been achieved. Herein, this work reports, for the first time, the construction of MOF-derived ordered mesoporous (OM) derivatives by developing a facile mesopore-inherited pyrolysis-oxidation strategy. This work demonstrates a particularly elegant example of this strategy, which involves the mesopore-inherited pyrolysis of OM-CeMOF into a OM-CeO2 @C composite, followed by the oxidation removal of its residual carbon, affording the corresponding OM-CeO2 . Furthermore, the good tunability of MOFs helps to allodially introduce zirconium into OM-CeO2 to regulate its acid-base property, thus boosting its catalytic activity for CO2 fixation. Impressively, the optimized Zr-doped OM-CeO2 can achieve above 16 times higher catalytic activity than its solid CeO2 counterpart, representing the first metal oxide-based catalyst to realize the complete cycloaddition of epichlorohydrin with CO2 under ambient temperature and pressure. This study not only develops a new MOF-based platform for enriching the family of ordered mesoporous nanomaterials, but also demonstrates an ambient catalytic system for CO2 fixation.
Collapse
Affiliation(s)
- Yimin Chen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Liyu Chen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yingwei Li
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kui Shen
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
5
|
Sun J, Chen L, Zhang X, Liu X, Wu C, Gan T. Monitoring of trace aquatic sulfonamides through hollow zinc-nitrogen-carbon electrocatalysts anchored on MXene architectures. Food Chem 2023; 424:136410. [PMID: 37216780 DOI: 10.1016/j.foodchem.2023.136410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Herein, we designed and fabricated hollow N-doped carbon polyhedrons with atomically dispersed Zn species (Zn@HNCPs) through a topo-conversion strategy by utilising metal-organic frameworks as precursors. Zn@HNCPs achieved efficient electrocatalytic oxidation of sulfaguanidine (SG) and phthalyl sulfacetamide (PSA) sulfonamides through the high intrinsic catalytic activity of the Zn-N4 sites and excellent diffusion from the hollow porous nanostructures. The combination of the novel Zn@HNCPs with two-dimensional Ti3C2Tx MXene nanosheets resulted in improved synergistic electrocatalytic performance for the simultaneous monitoring of SG and PSA. Therefore, the detection limit of SG for this technique is much lower than those of other reported techniques; to the best of our knowledge, this is the first detection approach for PSA. Moreover, these electrocatalysts show promise for the quantification of SG and PSA in aquatic products. Our insights and findings can serve as guidelines for the development of highly active electrocatalysts for application in next-generation food analysis sensors.
Collapse
Affiliation(s)
- Junyong Sun
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; Fujian Provincial University Key Laboratory of Pollution Monitoring and Control, Minnan Normal University, Zhangzhou 363000, China
| | - Like Chen
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Xin Zhang
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Xian Liu
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Can Wu
- Hubei Jiangxia Laboratory, Wuhan 430299, China
| | - Tian Gan
- College of Chemistry and Chemical Engineering & Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
6
|
Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00169-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractWell-defined atomically dispersed metal catalysts (or single-atom catalysts) have been widely studied to fundamentally understand their catalytic mechanisms, improve the catalytic efficiency, increase the abundance of active components, enhance the catalyst utilization, and develop cost-effective catalysts to effectively reduce the usage of noble metals. Such single-atom catalysts have relatively higher selectivity and catalytic activity with maximum atom utilization due to their unique characteristics of high metal dispersion and a low-coordination environment. However, freestanding single atoms are thermodynamically unstable, such that during synthesis and catalytic reactions, they inevitably tend to agglomerate to reduce the system energy associated with their large surface areas. Therefore, developing innovative strategies to stabilize single-atom catalysts, including mass-separated soft landing, one-pot pyrolysis, co-precipitation, impregnation, atomic layer deposition, and organometallic complexation, is critically needed. Many types of supporting materials, including polymers, have been commonly used to stabilize single atoms in these fabrication techniques. Herein, we review the stabilization strategies of single-atom catalyst, including different synthesis methods, specific metals and carriers, specific catalytic reactions, and their advantages and disadvantages. In particular, this review focuses on the application of polymers in the synthesis and stabilization of single-atom catalysts, including their functions as carriers for metal single atoms, synthetic templates, encapsulation agents, and protection agents during the fabrication process. The technical challenges that are currently faced by single-atom catalysts are summarized, and perspectives related to future research directions including catalytic mechanisms, enhancement of the catalyst loading content, and large-scale implementation are proposed to realize their practical applications.
Graphical Abstract
Single-atom catalysts are characterized by high metal dispersibility, weak coordination environments, high catalytic activity and selectivity, and the highest atom utilization. However, due to the free energy of the large surface area, individual atoms are usually unstable and are prone to agglomeration during synthesis and catalytic reactions. Therefore, researchers have developed innovative strategies, such as soft sedimentation, one-pot pyrolysis, coprecipitation, impregnation, step reduction, atomic layer precipitation, and organometallic complexation, to stabilize single-atom catalysts in practical applications. This article summarizes the stabilization strategies for single-atom catalysts from the aspects of their synthesis methods, metal and support types, catalytic reaction types, and its advantages and disadvantages. The focus is on the application of polymers in the preparation and stabilization of single-atom catalysts, including metal single-atom carriers, synthetic templates, encapsulation agents, and the role of polymers as protection agents in the manufacturing process. The main feature of polymers and polymer-derived materials is that they usually contain abundant heteroatoms, such as N, that possess lone-pair electrons. These lone-pair electrons can anchor the single metal atom through strong coordination interactions. The coordination environment of the lone-pair electrons can facilitate the formation of single-atom catalysts because they can enlarge the average distance of a single precursor adsorbed on the polymer matrix. Polymers with nitrogen groups are favorable candidates for dispersing active single atoms by weakening the tendency of metal aggregation and redistributing the charge densities around single atoms to enhance the catalytic performance. This review provides a summary and analysis of the current technical challenges faced by single-atom catalysts and future research directions, such as the catalytic mechanism of single-atom catalysts, sufficiently high loading, and large-scale implementation.
Collapse
|
7
|
Efficient hydrocarboxylation of alkynes based on carbodiimide-regulated in situ CO generation from HCOOH: An alternative indirect utilization of CO2. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63848-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Guo J, Liu H, Li D, Wang J, Djitcheu X, He D, Zhang Q. A minireview on the synthesis of single atom catalysts. RSC Adv 2022; 12:9373-9394. [PMID: 35424892 PMCID: PMC8985184 DOI: 10.1039/d2ra00657j] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 12/31/2022] Open
Abstract
Single atom catalysis is a prosperous and rapidly growing research field, owing to the remarkable advantages of single atom catalysts (SACs), such as maximized atom utilization efficiency, tailorable catalytic activities as well as supremely high catalytic selectivity. Synthesis approaches play crucial roles in determining the properties and performance of SACs. Over the past few years, versatile methods have been adopted to synthesize SACs. Herein, we give a thorough and up-to-date review on the progress of approaches for the synthesis of SACs, outline the general principles and list the advantages and disadvantages of each synthesis approach, with the aim to give the readers a clear picture and inspire more studies to exploit novel approaches to synthesize SACs effectively.
Collapse
Affiliation(s)
- Jiawen Guo
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Dezheng Li
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Jian Wang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Xavier Djitcheu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Dehua He
- Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Qijian Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| |
Collapse
|
9
|
ZIF-L-derived ZnO/N-doped carbon with multiple active sites for efficient catalytic CO2 cycloaddition. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Shi X, Cao LN, Chen M, Huang Y. Recent progress on two-dimensional materials confining single atoms for CO2 photoreduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
|
12
|
Recent developments in the use of single-atom catalysts for water splitting. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63619-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Zhang F, Li J, Liu P, Li H, Chen S, Li Z, Zan WY, Guo J, Zhang XM. Ultra-high loading single CoN3 sites in N-doped graphene-like carbon for efficient transfer hydrogenation of nitroaromatics. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Jiang JS, Wei HL, Tan AD, Si R, Zhang WD, Yu YX. Fabricating high-loading Fe-N4 single-atom catalysts for oxygen reduction reaction by carbon-assisted pyrolysis of metal complexes. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63689-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Zhang X, Ding J, Qiu B, Li D, Bian Y, Zhu D, Wang S, Mai W, Ming S, Chen J, Li T. Ultralow Co Loading Phenanthroline‐based Porous Organic Polymer as a High‐efficient Heterogeneous Catalyst for the Fixation of CO
2
to Cyclic Carbonates at Ambient Conditions. ChemCatChem 2021. [DOI: 10.1002/cctc.202100230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaofeng Zhang
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Junhao Ding
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Bo Qiu
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Dajian Li
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Yunpeng Bian
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Dandan Zhu
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Shimin Wang
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Wenpeng Mai
- Department of Materials and Chemistry Engineering Henan University of Engineering Zhengzhou 451191 P. R. China
| | - Shujun Ming
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Jian Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials College of Chemical Engineering Huanggang Normal University Huanggang City 438000 Hubei Province P. R. China
| | - Tao Li
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
- Key Laboratory for Large-Format Battery Materials and System Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
16
|
Pei J, Zhao R, Mu X, Wang J, Liu C, Zhang XD. Single-atom nanozymes for biological applications. Biomater Sci 2020; 8:6428-6441. [PMID: 33141122 DOI: 10.1039/d0bm01447h] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanozymes have been widely used as highly active and stable arterial enzymes due to their controllable electronic transfer and unique catalytic reaction route. However, the development of nanozymes is hindered by their ambiguous structure, insufficient activity and inadequate substrate selectivity. In comparison, single-atom nanozymes (SAzymes) hold superior catalytic activity 10-100 times higher than conventional nanozymes by maximizing the utilization of metal atom dispersion, and exhibit versatile catalytic selectivity through precisely adjusting the atom spatial configuration. In this review, we highlight several well-defined SAzymes, and discuss their accurate atom configuration, catalytic mechanisms, enzyme-like activity, and applications in cancer treatment, brain disease, and wound healing. It is of great significance to understand the advantages and properties of SAzymes for further medical development.
Collapse
Affiliation(s)
- Jiahui Pei
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| | | | | | | | | | | |
Collapse
|
17
|
Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem Rev 2020; 120:11703-11809. [PMID: 33085890 DOI: 10.1021/acs.chemrev.0c00576] [Citation(s) in RCA: 366] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Zupeng Chen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
18
|
Chen J, Zhao P, Li D, Liu L, Li H. Achieving the Transformation of Captured CO2 to Cyclic Carbonates Catalyzed by a Bipyridine Copper Complex-Intercalated Porous Organic Framework. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Life Sciences, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - PeiPei Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Life Sciences, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Dandan Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Life Sciences, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Lina Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - He Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|