1
|
Yang C, Zhang J, Liu W, Cheng Y, Yang X, Wang W. Rational H 2 Partial Pressure over Nickel/Ceria Crystal Enables Efficient and Durable Wide-Temperature-Zone Air-Level CO 2 Methanation. Chemistry 2024:e202402516. [PMID: 39168823 DOI: 10.1002/chem.202402516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
On the way to carbon neutrality, directly catalyzing atmospheric CO2 into high-value chemicals might be an effective approach to mitigate the negative impacts of rising airborne CO2 concentrations. Here, we pioneer the investigation of the influence of the H2/CO2 partial pressure ratio (PPR) on air-level CO2 methanation. Using Ni/CeO2 as a case catalyst, increasing H2/CO2 PPR significantly improves low-temperature CO2 conversion and high-temperature CH4 selectivity, i. e., from 10 of H2/CO2 PPR on, CO2 is completely methanized at 250 °C, and nearly 100 % CH4 selectivity is achieved at 400 °C. 100-hour stability tests demonstrate the practical application potential of Ni/CeO2 at 250 °C and 400 °C. In-situ DRIFTS reveal that reinforced formate pathway by increasing H2/CO2 PPR is responsible for the high CH4 yield. In contrast, even though the CO pathway dominated CO2 conversion on Ni is enhanced by rising H2/CO2 PPR, but at a high reaction temperature, the promoted CO desorption still leads to lower CH4 selectivity. This work offers deep insights into the direct air-level CO2 resourceization, contributing to the achievement of airborne CO2 reductions.
Collapse
Affiliation(s)
- Chaoyang Yang
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Junlei Zhang
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Weiping Liu
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yao Cheng
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xueyi Yang
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wanglei Wang
- State Key Laboratory of Solidification Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
2
|
Zhu B, Li X, Li Y, Liu J, Zhang X. Boosting the Photocatalysis of Plasmonic Au-Cu Nanocatalyst by AuCu-TiO 2 Interface Derived from O 2 Plasma Treatment. Int J Mol Sci 2023; 24:10487. [PMID: 37445665 DOI: 10.3390/ijms241310487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Plasmonic gold (Au) and Au-based nanocatalysts have received significant attention over the past few decades due to their unique visible light (VL) photocatalytic features for a wide variety of chemical reactions in the fields of environmental protection. However, improving their VL photocatalytic activity via a rational design is prevalently regarded as a grand challenge. Herein we boosted the VL photocatalysis of the TiO2-supported Au-Cu nanocatalyst by applying O2 plasma to treat this bimetallic plasmonic nanocatalyst. We found that O2 plasma treatment led to a strong interaction between the Au and Cu species compared with conventional calcination treatment. This interaction controlled the size of plasmonic metallic nanoparticles and also contributed to the construction of AuCu-TiO2 interfacial sites by forming AuCu alloy nanoparticles, which, thus, enabled the plasmonic Au-Cu nanocatalyst to reduce the Schottky barrier height and create numbers of highly active interfacial sites. The catalyst's characterizations and density functional theory (DFT) calculations demonstrated that boosted VL photocatalytic activity over O2 plasma treated Au-Cu/TiO2 nanocatalyst arose from the favorable transfer of hot electrons and a low barrier for the reaction between CO and O with the construction of large numbers of AuCu-TiO2 interfacial sites. This work provides an efficient approach for the rational design and development of highly active plasmonic Au and Au-based nanocatalysts and deepens our understanding of their role in VL photocatalytic reactions.
Collapse
Affiliation(s)
- Bin Zhu
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116024, China
| | - Xue Li
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116024, China
| | - Yecheng Li
- Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jinglin Liu
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116024, China
| | - Xiaomin Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
3
|
Identification of the Active Sites of Platinum-Ceria Catalysts in Propane Oxidation and Preferential Oxidation of Carbon Monoxide in Hydrogen. Catal Letters 2022. [DOI: 10.1007/s10562-022-04254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Zheng H, Liao W, Ding J, Xu F, Jia A, Huang W, Zhang Z. Unveiling the Key Factors in Determining the Activity and Selectivity of CO 2 Hydrogenation over Ni/CeO 2 Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Hao Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Weiqi Liao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Jieqiong Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Fangkai Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Aiping Jia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui230026, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, Liaoning116023, China
| | - Zhenhua Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| |
Collapse
|
5
|
Wen Y, Huang Q, Zhang Z, Huang W. Morphology‐Dependent
Catalysis of
CeO
2
‐Based
Nanocrystal Model Catalysts. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Wen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Qiuyu Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Zhenhua Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Cataly‐sis of Anhui Higher Education Institutes and Department of Chemical Physics University of Science and Technology of China Hefei 230026 People's Republic of China
- Dalian National Laboratory for Clean Energy Chinese Academy of Sciences Dalian 116023 People's Republic of China
| |
Collapse
|
6
|
Fang Y, Sun H, Peng W, Yuan Q, Zhao C. Effect of Surface [Cu 4O] Moieties on the Activity of Cu-Based Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Fang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Hao Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wei Peng
- Information Technology Support, East China Normal University, Shanghai 200062, China
| | - Qinghong Yuan
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Chen Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
7
|
Dong J, Li D, Zhang Y, Chang P, Jin Q. Insights into the CeO2 facet-depended performance of propane oxidation over Pt-CeO2 catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Electrochemical Ce(III)/Ce(IV) interconversion, electrodeposition, and catalytic CO ↔ CO2 interconversion over terpyridine-modified indium tin oxide electrodes. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Zhou X, Shan J, Chen L, Xia BY, Ling T, Duan J, Jiao Y, Zheng Y, Qiao SZ. Stabilizing Cu 2+ Ions by Solid Solutions to Promote CO 2 Electroreduction to Methane. J Am Chem Soc 2022; 144:2079-2084. [PMID: 35089014 DOI: 10.1021/jacs.1c12212] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Copper is the only metal catalyst that can perform the electrocatalytic CO2 reduction reaction (CRR) to produce hydrocarbons and oxygenates. Its surface oxidation state determines the reaction pathway to various products. However, under the cathodic potential of CRR conditions, the chemical composition of most Cu-based catalysts inevitably undergoes electroreduction from Cu2+ to Cu0 or Cu1+ species, which is generally coupled with phase reconstruction and the formation of new active sites. Since the initial Cu2+ active sites are hard to retain, there have been few studies about Cu2+ catalysts for CRR. Herein we propose a solid-solution strategy to stabilize Cu2+ ions by incorporating them into a CeO2 matrix, which works as a self-sacrificing ingredient to protect Cu2+ active species. In situ spectroscopic characterization and density functional theory calculations reveal that compared with the conventionally derived Cu catalysts with Cu0 or Cu1+ active sites, the Cu2+ species in the solid solution (Cu-Ce-Ox) can significantly strengthen adsorption of the *CO intermediate, facilitating its further hydrogenation to produce CH4 instead of dimerization to give C2 products. As a result, different from most of the other Cu-based catalysts, Cu-Ce-Ox delivered a high Faradaic efficiency of 67.8% for CH4 and a low value of 3.6% for C2H4.
Collapse
Affiliation(s)
- Xianlong Zhou
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jieqiong Shan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ling Chen
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan, National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Tao Ling
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials (Ministry of Education), School of Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
10
|
Enhanced Catalytic Performance of Fenton-Like Reaction: Dependence on Meso-Structure and Cu-Ce Interaction. Catal Letters 2022. [DOI: 10.1007/s10562-021-03878-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Zhang Z, Fan L, Liao W, Zhao F, Tang C, Zhang J, Feng M, Lu JQ. Structure sensitivity of CuO in CO oxidation over CeO2-CuO/Cu2O catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Qi X, He Y, Yao Y, Li Y, Zhang L, Geng M, Wei H, Chu H. Effect of CeO2 morphology on the catalytic properties of Au/CeO2 for base-free glucose oxidation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02078a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Au/R-CeO2 catalyst with strong metal–support interaction and abundant oxygen vacancies displays superior glucose oxidation performance, as compared with Au/C-CeO2 and Au/O-CeO2.
Collapse
Affiliation(s)
- Xingyue Qi
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Yalin He
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Yan Yao
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Yiran Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Lu Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Miao Geng
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Hang Wei
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| | - Haibin Chu
- College of Chemistry and Chemical Engineering, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
13
|
Ji W, Wang N, Li Q, Zhu H, Lin K, Deng J, Chen J, Zhang H, Xing X. Oxygen vacancy distributions and electron localization in a CeO2(100) nanocube. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01179k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxygen vacancy distributions in a 5 nm CeO2 nanocube were determined using the Reverse Monte Carlo method. The oxygen vacancies tend to be located on the surface of the CeO2 nanocube, with far fewer in subsurface and internal regions.
Collapse
Affiliation(s)
- Weihua Ji
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Na Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - He Zhu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
14
|
Affiliation(s)
- Zhenhua Zhang
- Department, Institution, Address 1 Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China Hefei 230026 People's Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Rui You
- Department, Institution, Address 1 Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Weixin Huang
- Department, Institution, Address 1 Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China Hefei 230026 People's Republic of China
- Dalian National Laboratory for Clean Energy Dalian 116023 People's Republic of China
| |
Collapse
|
15
|
Lu B, Xu Y, Zhang Z, Wu F, Li X, Luo C, Zhang L. CO2 hydrogenation on CeO2@Cu catalyst synthesized via a solution auto-combustion method. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Hu M, Meng F, Li N, Zhang S, Ma J. Insight Into the CuOx Interacts with Oxygen Vacancies on the Surface of Black-TiO2 for NO Oxidation. Catal Letters 2021. [DOI: 10.1007/s10562-021-03729-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Ye J, Wang S, Li G, He B, Chen X, Cui Y, Zhao W, Sun J. Insight into the Morphology-Dependent Catalytic Performance of CuO/CeO 2 Produced by Tannic Acid for Efficient Hydrogenation of 4-Nitrophenol. Chem Asian J 2021; 16:3371-3384. [PMID: 34431617 DOI: 10.1002/asia.202100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/03/2021] [Indexed: 11/08/2022]
Abstract
The construction of a heterogeneous nanocatalyst with outstanding catalytic performance via an environmentally benign and cost-effective synthetic category has long been one of the challenges in nanotechnology. Herein, we synthesized highly efficient and low-cost mesoporous morphology-dependent CuO/CeO2 -Rods and CuO/CeO2 -Cubes catalysts by employing a green and multifunctional polyphenolic compound (tannic acid) as the stabilizer and chelating agent for 4-nitrophenol (4-NP) reduction reaction. The CuO/CeO2 -Rods exhibited excellent performance, of which the activity was 3.2 times higher than that of CuO/CeO2 -Cubes. This can be connected with the higher density of oxygen vacancy on CeO2 -Rods (110) than CeO2 -Cubes (100), the oxygen vacancy favors anchoring CuO species on the CeO2 support, which promotes the strong interaction between finely dispersed CuO and CeO2 -Rods at the interfacial positions and facilitates the electron transfer from BH4 - to 4-NP. The synergistic catalytic mechanism illustrated that 4-NP molecules preferentially adsorbed on the CeO2 , while H2 from BH4 - dissociated over CuO to form highly active H* species, contributing to achieving efficient hydrogenation of 4-NP. This study is expected to shed light on designing and synthesizing cost-effective and high-performance nanocatalysts through a greener synthetic method for the areas of catalysis, nanomaterial science and engineering, and chemical synthesis.
Collapse
Affiliation(s)
- Junqing Ye
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuaijun Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Gen Li
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Bin He
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xinyan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuandong Cui
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Wanting Zhao
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Jian Sun
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
18
|
Yu WZ, Wu MY, Wang WW, Jia CJ. In Situ Generation of the Surface Oxygen Vacancies in a Copper-Ceria Catalyst for the Water-Gas Shift Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10499-10509. [PMID: 34435787 DOI: 10.1021/acs.langmuir.1c01428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The dissociation of H2O is a crucial aspect for the water-gas shift reaction, which often occurs on the vacancies of a reducible oxide support. However, the vacancies sometimes run off, thus inhibiting H2O dissociation. After high-temperature treatment, the ceria supports were lacking vacancies because of sintering. Unexpectedly, the in situ generation of surface oxygen vacancies was observed, ensuring the efficient dissociation of H2O. Due to the surface reconstruction of ceria nanorods, the copper species sustained were highly dispersed on the sintered support, on which CO was adsorbed efficiently to react with hydroxyls from H2O dissociation. In contrast, no surface reconstruction occurred in ceria nanoparticles, leading to the sintering of copper species. The sintered copper species were averse to adsorb CO, so the copper-ceria nanoparticle catalyst had poor reactivity even when surface oxygen vacancies could be generated in situ.
Collapse
Affiliation(s)
- Wen-Zhu Yu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Mei-Yao Wu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
19
|
Qiu Z, Guo X, Mao J, Zhou R. Elucidating the structure, redox properties and active entities of high-temperature thermally aged CuO x-CeO 2 catalysts for CO-PROX. Phys Chem Chem Phys 2021; 23:15582-15590. [PMID: 34259269 DOI: 10.1039/d1cp01798e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CuOx-CeO2 catalysts with different copper contents are synthesized via a coprecipitation method and thermally treated at 700 °C. Various characterization techniques including X-ray diffraction (XRD) Rietveld refinement, N2 adsorption-desorption isotherms, X-ray photoelectron spectra (XPS), UV-Raman, high-resolution transmission electron microscopy (HRTEM), temperature-programmed reduction (TPR) and in situ diffuse reflectance infrared Fourier transform spectra (DRIFTs) were adopted to investigate the structure/texture properties, oxygen vacancies, Cu-Ce interaction and redox properties of the catalysts. After the thermal treatment, the catalysts exhibited outstanding catalytic properties for the preferential oxidation (PROX) of CO (with the T50% of 62 °C and the widest operation temperature window of 85-140 °C), which provided a new strategy for the design of Cu-Ce based catalysts with high catalytic performance. The characterization results indicated that moderately elevating the copper content (below 5%) increases the amount of highly dispersed Cu species in the catalysts, including highly dispersed surface CuOx species and strongly bonded Cu-[Ox]-Ce species, strengthening the Cu-Ce interaction, increasing oxygen vacancies and promoting redox properties, but a further increase in copper content causes the agglomeration of crystalline CuO and decreases the highly dispersed Cu species. This work also provides evidence from the perspective that the catalytic performance of CuOx-CeO2 catalysts for CO-PROX at low and high reaction temperatures is dependent on the redox properties of highly dispersed CuOx species and strongly bonded Cu-[Ox]-Ce species, respectively.
Collapse
Affiliation(s)
- Zhihuan Qiu
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, P. R. China.
| | - Xiaolin Guo
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, P. R. China
| | - Jianxin Mao
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, P. R. China.
| | - Renxian Zhou
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, P. R. China.
| |
Collapse
|
20
|
Zheng B, Gan T, Shi S, Wang J, Zhang W, Zhou X, Zou Y, Yan W, Liu G. Exsolution of Iron Oxide on LaFeO 3 Perovskite: A Robust Heterostructured Support for Constructing Self-Adjustable Pt-Based Room-Temperature CO Oxidation Catalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27029-27040. [PMID: 34096275 DOI: 10.1021/acsami.1c04836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Constructing highly active and stable surface sites for O2 activation is essential to lower the barrier of Pt-based catalysts for CO oxidation. Although a few active Pt-metal oxide interfaces have been reported, questions about the stability of these sites under the long-term storage and operation remain unresolved. Here, based on developing a robust FeOx/LaFeO3 heterostructure as a support, we constructed stable Pt-support interfaces to achieve highly active CO oxidation at room temperature. Even after it is kept in the air for more than 6 months, the catalyst (without pretreatment) still maintains the high activity like a fresh one, which is superior to metal hydroxide-Pt interfaces, and meets the requirements of long-term storage for emergency use. In situ characterizations and systematic reaction results showed that CO oxidation occurs through an alternative mechanism, which is triggered by intrinsic reactants and self-adjusted to a more active interface in the reaction process. Theoretical calculations and 57Fe Mössbauer spectra revealed that abundant cation vacancies significantly increase the activity of surface oxygen species and should be responsible for this unique process. This work demonstrates an alternative concept to fabricate robust and highly active Pt-based catalysts for catalytic oxidation.
Collapse
Affiliation(s)
- Bin Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| | - Tao Gan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| | - Shaozhen Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| | - Junhu Wang
- Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China
| | - Wenxiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| | - Xin Zhou
- College of Environment and Chemical Engineering, Dalian University, 10 Xuefu Road, Dalian 116622, Liaoning, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| | - Gang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, Jilin, China
| |
Collapse
|
21
|
Sun R, Yu F, Wan Y, Pan K, Li W, Zhao H, Dan J, Dai B. Reducing N
2
O Formation over CO‐SCR Systems with CuCe Mixed Metal Oxides. ChemCatChem 2021. [DOI: 10.1002/cctc.202100057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruobing Sun
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
- Bingtuan Industrial Technology Research Institute Shihezi University Shihezi 832003 P.R. China
| | - Yinji Wan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Keke Pan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Wenjian Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Huanhuan Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Jianming Dan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| |
Collapse
|
22
|
|
23
|
Facet-Dependent Reactivity of Ceria Nanoparticles Exemplified by CeO2-Based Transition Metal Catalysts: A Critical Review. Catalysts 2021. [DOI: 10.3390/catal11040452] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at the nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions; it can also opening up new horizons for the development of highly active and robust materials. The present critical review, focusing mainly on our recent advances on the topic, aims to highlight the pivotal role of shape engineering in catalysis, exemplified by noble metal-free, CeO2-based transition metal catalysts (TMs/CeO2). The underlying mechanism of facet-dependent reactivity is initially discussed. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, and polyhedra) in catalysis are next discussed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, and Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metalceria interactions. From the practical point of view, novel catalyst formulations with similar or even superior reactivity to that of noble metals can be obtained by co-adjusting the shape and composition of mixed oxides, such as Cu/ceria nanorods for CO oxidation and Ni/ceria nanorods for CO2 hydrogenation. The conclusions derived could provide the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.
Collapse
|
24
|
Hu Z, Zou Z, Xie A, Chen C, Zhu X, Zhang Y, Zhang H, Zhao H, Wang G. Crystal plane effect of ceria on supported copper catalyst for liquid-phase hydrogenation of unsaturated aldehyde. J Colloid Interface Sci 2021; 596:34-43. [PMID: 33839359 DOI: 10.1016/j.jcis.2021.03.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022]
Abstract
Ceria has been widely used as catalyst support displaying a size- or shape-dependent catalytic performance due to the strong metal-support interaction (SMSI) effect with active metal. Almost all the studies on the SMSI effect of ceria-supported metal catalysts are involved generally in gas-phase reaction, but rarely in the liquid-phase reaction system. In this work, Cu/CeO2-P (copper loaded on nano-polyhedral CeO2 with (111) terminated surface) was investigated its catalytic performance on liquid-phase hydrogenation and studied the SMSI effect by comparing with the catalysts supported on nano-rod and nano-cube CeO2. It was found that Cu was highly dispersed on the external surface of ceria in the Cu/CeO2-P catalyst via a moderate SMSI effect. Furthermore, the degree of the interaction showed great influence on the chemical state of Cu species, and the ratio of (Cu++Cu0)/Cu2+ in Cu/CeO2-P was higher than Cu/CeO2-R (Cu loaded on nano-rod CeO2 with (110) plane) and Cu/CeO2-C (Cu loaded on nano-cube CeO2 with (100) facet). As a result, the Cu/CeO2-P catalyst showed the best catalytic performance among three types of catalysts. Based on series of catalytic investigations, the catalytic performance in liquid-phase hydrogenation was intrinsically relevant to the crystal plane effect and reduced Cu proportion induced by an appropriate SMSI effect, which was completely different from gas-phase hydrogenation.
Collapse
Affiliation(s)
- Zhi Hu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Zidan Zou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Aidi Xie
- University of Science and Technology of China, Hefei 230026, China
| | - Chun Chen
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| | - Xiaoguang Zhu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Yunxia Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Huijun Zhao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
25
|
Zhang Z, Wang ZQ, Li Z, Zheng WB, Fan L, Zhang J, Hu YM, Luo MF, Wu XP, Gong XQ, Huang W, Lu JQ. Metal-Free Ceria Catalysis for Selective Hydrogenation of Crotonaldehyde. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04523] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Zhenhua Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Zhi-Qiang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Zhaorui Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Wan-Bin Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Liping Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Jing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Yi-Ming Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Meng-Fei Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, People’s Republic of China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, People’s Republic of China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian 116023, People’s Republic of China
| | - Ji-Qing Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
| |
Collapse
|
26
|
Atomically dispersed copper species on ceria for the low-temperature water-gas shift reaction. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9867-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Chen Y, Liu Y, Mao D, Yu J, Zheng Y, Guo X, Ma Z. Facile cyclodextrin-assisted synthesis of highly active CuO-CeO2/MCF catalyst for CO oxidation. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Yu Z, Zhang Z, Zhang Y, Huang W. Titania Morphology‐Dependent Catalysis of CuO
x
/TiO
2
Catalysts in CO Oxidation and Water Gas Shift Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000274] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zongyou Yu
- Hefei National Laboratory for Physical Sciences at Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion Department of Chemical PhysicsUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 P. R. China
| | - Zhenhua Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical ChemistryZhejiang Normal University Jinhua 321004 Zhejiang P. R. China
| | - Yunshang Zhang
- Hefei National Laboratory for Physical Sciences at Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion Department of Chemical PhysicsUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion Department of Chemical PhysicsUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 P. R. China
| |
Collapse
|
29
|
Yu J, Guo Q, Xiao X, Mao H, Mao D, Yu J. High-heat treatment enhanced catalytic activity of CuO/CeO 2 catalysts with low CuO content for CO oxidation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00757a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CuO/CeO2 catalysts with low CuO content and calcined at 800 °C exhibited better catalytic performance than those calcined at 500 °C. The coordinatively unsaturated copper atoms were proved to be the main active sites in the CuO/CeO2 catalysts.
Collapse
Affiliation(s)
- Jihang Yu
- Research Institute of Applied Catalysis
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Qiangsheng Guo
- Research Institute of Applied Catalysis
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Xiuzhen Xiao
- Research Institute of Applied Catalysis
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Haifang Mao
- Research Institute of Applied Catalysis
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Dongsen Mao
- Research Institute of Applied Catalysis
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Jun Yu
- Research Institute of Applied Catalysis
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| |
Collapse
|