1
|
Zhang X, Ni W, Yue X, Wang Z, Zhang Z, Wang K, Dai W, Fu X. Synergistic effect between sulfur vacancies and S-scheme heterojunctions in WO 3/V S-Zn 3In 2S 6 for enhanced photocatalytic CO 2 reduction in H 2O vapor. J Colloid Interface Sci 2025; 678:233-245. [PMID: 39243723 DOI: 10.1016/j.jcis.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Converting CO2 into CO, CH4, and other hydrocarbons using solar energy presents a viable approach for addressing energy shortages. In this study, photocatalysts with S-deficient WO3/Zn3In2S6 (WO3/VS-ZIS) S-scheme heterojunctions have been successfully synthesized. Under UV-vis light irradiation, 20 %WO3/VS-ZIS demonstrated significantly improved CO2 reduction activity and CH4 selectivity. Detailed characterization and density functional theory (DFT) calculations reveal that the enhanced performance is due to the synergistic optimization of the S-scheme heterojunction and sulfur vacancies (VS) for CO2 reduction. The presence of VS aids in the adsorption and activation of CO2 and enhances the separation of charge carriers. The 2D/2D S-scheme heterostructure assembled with WO3 nanosheets not only accelerates the migration and separation of photoexcited charge carriers but also improves the adsorption of H2O and the formation of VS, thereby increasing the adsorption and activation of CO2 and facilitating the protonation of CO* to produce CH4. This study clarifies the synergistic effect of VS and S-scheme heterostructures in improving photocatalytic performance, offering valuable insights into the photoactivation process of CO2 at VS in S-scheme heterojunctions.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Wenkang Ni
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Xuanyu Yue
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Zhijie Wang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Zizhong Zhang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
| | - Ke Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Wenxin Dai
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
| | - Xianzhi Fu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
2
|
Chen B, Wang Y, Shen S, Zhong W, Lu H, Pan Y. Lattice Defects and Electronic Modulation of Flower-Like Zn 3In 2S 6 Promote Photocatalytic Degradation of Multiple Antibiotics. SMALL METHODS 2024; 8:e2301598. [PMID: 38168900 DOI: 10.1002/smtd.202301598] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Photocatalysis is an effective technique to remove antibiotic residues from aquatic environments. Typical metal sulfides like Zn3In2S6 have been applied to a wide range of photocatalytic applications. However, there are currently no readily accessible methods to increase its antibiotic-degrading activity. Here, a facile hydrothermal approach is developed for the preparation of flower-like Zn3In2S6 with tunable sulfur lattice defects. Photogenerated carriers can be separated and transferred more easily when there is an adequate amount of lattice defects. Moreover, lattice defect-induced electronic modulation enhances light utilization and adsorption properties. The modified Zn3In2S6 demonstrates outstanding photocatalytic degradation activity for levofloxacin, ofloxacin, and tetracycline. This work sheds light on exploring metal sulfides with sulfur lattice defects for enhancing photocatalytic activity.
Collapse
Affiliation(s)
- Baofu Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Yichao Wang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Shijie Shen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Wenwu Zhong
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Hongsheng Lu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| | - Yin Pan
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Zhejiang, 318000, China
| |
Collapse
|
3
|
Pan H, Li J, Wang Y, Xia Q, Qiu L, Zhou B. Solar-Driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402651. [PMID: 38816938 PMCID: PMC11304308 DOI: 10.1002/advs.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.
Collapse
Affiliation(s)
- Hu Pan
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yangang Wang
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Qineng Xia
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
4
|
Liu W, Xiong Y, Liu Q, Chang X, Tian J. The construction of S-scheme heterostructure in ultrathin WS 2/Zn 3In 2S 6 nanosheets for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 651:633-644. [PMID: 37562305 DOI: 10.1016/j.jcis.2023.07.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
Metal sulfide based photocatalysts are considered to be economic, environmentally benign and renewable. The rapid recombination of photogenerated electrons and holes and low solar energy utilization efficiency, however, remain a huge bottleneck. Herein, two-dimensional/two-dimensional (2D/2D) S-scheme WS2/Zn3In2S6 heterostructure with ultrathin nanosheets intervening between neighboring component has been designed. The large and intimate S-scheme heterojunctions facilitate interfacial charge separation/transfer and optimize the available redox potential. Besides, the ultrathin 2D/2D heterostructure ensures large specific surface area, maximized interface synergistic interaction, and effective exposure of surface active sites. As a result, 2 wt% WS2/Zn3In2S6 exhibits a high photocatalytic hydrogen production rate of 30.21 mmol·g-1·h-1 under simulated solar light illumination with an apparent quantum efficiency of 56.1% at 370 nm monochromatic light, far exceeding pristine Zn3In2S6 (6.65 mmol·g-1·h-1). Our work underscores the significance of integrating morphology engineering and S-scheme heterojunctions design for high-efficient and low-cost photocatalysts.
Collapse
Affiliation(s)
- Wendi Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China
| | - Ya Xiong
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China.
| | - Qian Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China
| | - Xiao Chang
- College of Physics, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China.
| |
Collapse
|
5
|
Gao X, Jian S, Wang W, Li B, Huang J, Lei Y, Wang D. Study on Photochemical Properties of a Sr-SnS 2/CaIn 2S 4 Heterostructure to Improve Cr(VI) Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10542-10552. [PMID: 37463864 DOI: 10.1021/acs.langmuir.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Compound semiconductor photocatalysis technology is considered to be a promising treatment for solving water problems efficiently. The point of designing high-efficiency catalysts is to optimize the band gap structure and facilitate the separation of charge carriers by establishing new electron migration pathways. Recently, 3D porous CaIn2S4 was found to have good photocatalytic ability. However, the quick recombination and agglomeration of carriers still limit its application. Herein, we prepared a heterostructure by introducing 2D Sr-doped SnS2 to 3D CaIn2S4 by a hydrothermal synthesis method. The optimal dosage of Sr-SnS2 is 3%, and the photocatalytic Cr(VI) removal efficiency of 3% Sr-SnS2/CaIn2S4 (SSCS-3) is 5.82 and 10.83 times those of pure CaIn2S4 and SnS2, respectively. According to the results of characterization tests and calculation verification, we inferred that the enhanced photocatalytic removal of Cr(VI) is due to the introduction of Sr-SnS2 that can promote the rapid transfer of photogenerated electrons to the surface of CaIn2S4, and the heterostructure formed between 2D Sr-SnS2 and 3D CaIn2S4 can also provide abundant reaction sites. The promotion of carrier separation is mainly due to the formation of a built-in electric field of the Sr-SnS2/CaIn2S4 heterostructure. This work provides new ideas and technologies for the treatment of Cr(VI) in wastewater.
Collapse
Affiliation(s)
- Xin Gao
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
| | - Shouwei Jian
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
- State Key Laboratory of Silicate Building Materials, Wuhan University of Technology, Wuhan430070,China
| | - Weizhen Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
| | - Baodong Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
| | - Jianxiang Huang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
| | - Yuting Lei
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
| | - Danfeng Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070,China
| |
Collapse
|
6
|
Yang R, Fan Y, Zhang Y, Mei L, Zhu R, Qin J, Hu J, Chen Z, Hau Ng Y, Voiry D, Li S, Lu Q, Wang Q, Yu JC, Zeng Z. 2D Transition Metal Dichalcogenides for Photocatalysis. Angew Chem Int Ed Engl 2023; 62:e202218016. [PMID: 36593736 DOI: 10.1002/anie.202218016] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs), a rising star in the post-graphene era, are fundamentally and technologically intriguing for photocatalysis. Their extraordinary electronic, optical, and chemical properties endow them as promising materials for effectively harvesting light and catalyzing the redox reaction in photocatalysis. Here, we present a tutorial-style review of the field of 2D TMDs for photocatalysis to educate researchers (especially the new-comers), which begins with a brief introduction of the fundamentals of 2D TMDs and photocatalysis along with the synthesis of this type of material, then look deeply into the merits of 2D TMDs as co-catalysts and active photocatalysts, followed by an overview of the challenges and corresponding strategies of 2D TMDs for photocatalysis, and finally look ahead this topic.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.,Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yingying Fan
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.,Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yuefeng Zhang
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Liang Mei
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Rongshu Zhu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, P. R. China
| | - Jiaqian Qin
- Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Zhangxing Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Yun Hau Ng
- Low-Carbon and Climate Impact Research Centre, School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Qian Wang
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Jimmy C Yu
- Department of Chemistry and Materials Science and Technology Research Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
7
|
Hong D, Sharma A, Jiang D, Stellino E, Ishiyama T, Postorino P, Placidi E, Kon Y, Koga K. Laser Ablation Nanoarchitectonics of Au-Cu Alloys Deposited on TiO 2 Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation. ACS OMEGA 2022; 7:31260-31270. [PMID: 36092562 PMCID: PMC9453982 DOI: 10.1021/acsomega.2c03509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The regulation of H2 evolution from formic acid dehydrogenation using recyclable photocatalyst films is an essential approach for on-demand H2 production. We have successfully generated Au-Cu nanoalloys using a laser ablation method and deposited them on TiO2 photocatalyst films (Au x Cu100-x /TiO2). The Au-Cu/TiO2 films were employed as photocatalysts for H2 production from formic acid dehydrogenation under light-emitting diode (LED) irradiation (365 nm). The highest H2 evolution rate for Au20Cu80/TiO2 is archived to 62,500 μmol h-1 g-1 per photocatalyst weight. The remarkable performance of Au20Cu80/TiO2 may account for the formation of Au-rich surfaces and the effect of Au alloying that enables Cu to sustain the metallic form on its surface. The metallic Au-Cu surface on TiO2 is vital to supply the photoexcited electrons of TiO2 to its surface for H2 evolution. The rate-determining step (RDS) is identified as the reaction of a surface-active species with protons. The results establish a practical preparation of metal alloy deposited on photocatalyst films using laser ablation to develop efficient photocatalysts.
Collapse
Affiliation(s)
- Dachao Hong
- Interdisciplinary
Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Aditya Sharma
- Interdisciplinary
Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Dianping Jiang
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology, (AIST) 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Elena Stellino
- Physics
and Geology Department, University of Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Tomohiro Ishiyama
- Research
Institute for Energy Conservation, National
Institute of Advanced Industrial Science and Technology, (AIST) 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Paolo Postorino
- Physics
Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ernesto Placidi
- Physics
Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Yoshihiro Kon
- Interdisciplinary
Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kenji Koga
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology, (AIST) 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
8
|
Rahman A, Jennings JR, Tan AL, Khan MM. Molybdenum Disulfide-Based Nanomaterials for Visible-Light-Induced Photocatalysis. ACS OMEGA 2022; 7:22089-22110. [PMID: 35811905 PMCID: PMC9260757 DOI: 10.1021/acsomega.2c01314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/08/2022] [Indexed: 05/08/2023]
Abstract
Visible-light-responsive photocatalytic materials have a multitude of important applications, ranging from energy conversion and storage to industrial waste treatment. Molybdenum disulfide (MoS2) and its variants exhibit high photocatalytic activity under irradiation by visible light as well as good stability and recyclability, which are desirable for all photocatalytic applications. MoS2-based materials have been widely applied in various fields such as wastewater treatment, environmental remediation, and organic transformation reactions because of their excellent physicochemical properties. The present review focuses on the fundamental properties of MoS2, recent developments and remaining challenges, and key strategies for tackling issues related to the utilization of MoS2 in photocatalysis. The application of MoS2-based materials in visible-light-induced catalytic reactions for the treatment of diverse kinds of pollutants including industrial, environmental, pharmaceutical, and agricultural waste are also critically discussed. The review concludes by highlighting the prospects of MoS2 for use in various established and emerging areas of photocatalysis.
Collapse
Affiliation(s)
- Ashmalina Rahman
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - James Robert Jennings
- Applied
Physics, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
- Optoelectronic
Device Research Group, Universiti Brunei
Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Ai Ling Tan
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Mohammad Mansoob Khan
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
- Optoelectronic
Device Research Group, Universiti Brunei
Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
- ;
| |
Collapse
|
9
|
Ge J, Chen Y, Zhao Y, Wang Y, Zhang F, Lei X. Activated MoS 2 by Constructing Single Atomic Cation Vacancies for Accelerated Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26846-26857. [PMID: 35657022 DOI: 10.1021/acsami.2c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Regulating the electronic structure of MoS2 by constructing cationic vacancies is an effective method to activate and improve its intrinsic properties. Herein, we synthesize the MoS2-based composite with abundant single atomic Mo cation vacancies through uniformly loading nickel-cobalt-Prussian blue analogues (NiCoPBA) (NiCoPBA-MoS2-VMo) by immersing a single Ni atom-decorated MoS2 (Ni-MoS2) into K3[Co(CN)6] solution. Subsequently, NiCoP-MoS2-VMo with improved conductivity is obtained by phosphating the composite as a high-efficiency hydrogen evolution reaction (HER) catalyst. Experiments and theoretical calculations indicate that the electrons of NiCoP are spontaneously transferred to the substrate MoS2-VMo nanosheets in NiCoP-MoS2-VMo, and the moderately oxidized NiCoP is beneficial to the adsorption of OH*. Meanwhile, the mono-atomic Mo cation vacancies of the catalyst modulate the electronic structure of S, optimizing the adsorption of hydrogen in the reaction process. Therefore, NiCoP-MoS2-VMo has enhanced chemical adsorption for H* (on MoS2-VMo) and OH*(on NiCoP), expediting the water-splitting step and HER catalysis, and benefiting from the regulation of the electronic structure induced by the construction of metallic Mo vacancies in MoS2, the as-prepared catalyst displays an overpotential of only 67 mV at 10 mA cm-2 with long-term stability (no current decay over 20 h). This work affords not only a kind of efficient HER catalysts but also a new valuable route for developing inexpensive and high-performance catalysts with single atomic cation vacancies.
Collapse
Affiliation(s)
- Jingmin Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxin Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiping Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fazhi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaodong Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
MoS2 as a Co-Catalyst for Photocatalytic Hydrogen Production: A Mini Review. Molecules 2022; 27:molecules27103289. [PMID: 35630769 PMCID: PMC9145188 DOI: 10.3390/molecules27103289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Molybdenum disulfide (MoS2), with a two-dimensional (2D) structure, has attracted huge research interest due to its unique electrical, optical, and physicochemical properties. MoS2 has been used as a co-catalyst for the synthesis of novel heterojunction composites with enhanced photocatalytic hydrogen production under solar light irradiation. In this review, we briefly highlight the atomic-scale structure of MoS2 nanosheets. The top-down and bottom-up synthetic methods of MoS2 nanosheets are described. Additionally, we discuss the formation of MoS2 heterostructures with titanium dioxide (TiO2), graphitic carbon nitride (g-C3N4), and other semiconductors and co-catalysts for enhanced photocatalytic hydrogen generation. This review addresses the challenges and future perspectives for enhancing solar hydrogen production performance in heterojunction materials using MoS2 as a co-catalyst.
Collapse
|
11
|
Zhong W, Xu J, Wang P, Zhu B, Fan J, Yu H. Novel core-shell Ag@AgSe nanoparticle co-catalyst: In situ surface selenization for efficient photocatalytic H2 production of TiO2. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63969-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Yang Y, Zheng X, Liu J, Qi Z, Su TY, Cai C, Fu X, Meng S, Chen S. Efficient H2 evolution on Co3S4/Zn0.5Cd0.5S nanocomposite by photocatalytic synergistic reaction. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01617b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To achieve high photocatalytic efficiency of H2 evolution, promoting the utilization rate of photogenerated charge carriers by photocatalytic synergistic reaction is an efficient strategy. In this work, Co3S4/Zn0.5Cd0.5S nanocomposites with...
Collapse
|
13
|
Lin H, Sui X, Wu J, Shi Q, Chen H, Wang H, Li S, Li Y, Wang L, Tam KC. Robust visible-light photocatalytic H 2 evolution on 2D RGO/Cd 0.15Zn 0.85In 2S 4–Ni 2P hierarchitectures. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02311j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unique 2D ternary hierarchitectures constructed from reduced graphene oxide nanosheets grown with ultrathin Cd0.15Zn0.85In2S4 nanosheets and Ni2P nanoparticles exhibited an outstanding capability for visible-light photocatalytic H2 production.
Collapse
Affiliation(s)
- Haifeng Lin
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xue Sui
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiakun Wu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qiqi Shi
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hanchu Chen
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Provincial Key Laboratory of Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hui Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Provincial Key Laboratory of Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shaoxiang Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yanyan Li
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
14
|
Coordinating ultra-low content Au modified CdS with coupling selective oxidation and reduction system for improved photoexcited charge utilization. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Zhao G, Xu X. Cocatalysts from types, preparation to applications in the field of photocatalysis. NANOSCALE 2021; 13:10649-10667. [PMID: 34105577 DOI: 10.1039/d1nr02464g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the rapid development of society, the burden of energy and the environment is becoming more and more serious. Photocatalytic hydrogen production, the photosynthesis of organic fuel, and the photodegradation of pollutants are three effective ways to reduce these burdens using semiconductor photocatalysts. To improve the reaction efficiency of photocatalysts, a small amount of cocatalyst is often added when photocatalysts participate in the synthesis or decomposition reaction. The addition of this small amount of cocatalyst is like a finishing touch, significantly increasing the activity of the photocatalysts. However, in our common study of photocatalysis, we often pay attention to the study of photocatalysts but ignore the study of cocatalysts. Herein, we summarize the recent application research on cocatalysts in the field of photocatalysis, starting from the types, preparation methods, and reaction mechanisms among others, to remind researchers of the matters needing attention when using cocatalysts.
Collapse
Affiliation(s)
- Gang Zhao
- Laboratory of Functional Micro-nano Material and Device, School of Physics and Technology, University of Jinan, Jinan, Shandong, P. R. China.
| | - Xijin Xu
- Laboratory of Functional Micro-nano Material and Device, School of Physics and Technology, University of Jinan, Jinan, Shandong, P. R. China.
| |
Collapse
|
16
|
Hydrothermal construction of flower-like MoS2 on TiO2 NTs for highly efficient environmental remediation and photocatalytic hydrogen evolution. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118463] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Wang J, Wang X, Qiu L, Wang H, Duan L, Kang Z, Liu J. Photocatalytic selective H 2release from formic acid enabled by CO 2captured carbon nitride. NANOTECHNOLOGY 2021; 32:275404. [PMID: 33690178 DOI: 10.1088/1361-6528/abed06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The selective decomposition of formic acid (FA) traditionally needs to be carried out under high temperature with the noble metal-based catalysts. Meanwhile, it also encounters a separation of H2and CO2for pure H2production. The photocatalytic FA dehydrogenation under mild conditions can meet a growing demand for sustainable H2generation. Here, we reported a photocatalytic selective H2release from FA decomposition at low temperature for pure H2production by Pt/g-C3N4. Low-cost and easy-to-obtained urea was utilized to produce carbon nitride as the metal-free semiconductor photocatalyst, along with a photodeposition to obtain Pt/g-C3N4. The electrochemical evidences clearly demonstrate the photocatalytic activity of Pt/g-C3N4to produce H2and CO2in one-step FA decomposition. And, the impedance is the lowest under simulated solar light of 70 mW cm-2with a faster electron transfer kinetic. Under simulated solar light, H2production rate is up to 1.59 mmol · h-1· g-1for FA with concentration at 2.65 mol l-1, 1700 000 times larger than that under visible light and 1928 times under ultraviolet (UV) light. DFT calculations further elucidate that nitrogen (N) active site at the g-C3N4has an excellent adsorption towards CO2molecule capture. Then, H2molecules are selectively released to simultaneously separate H2and CO2in solution. Platinum (Pt) at Pt/g-C3N4as the catalytic site contributes into the acceleration of H2production.
Collapse
Affiliation(s)
- Jinghui Wang
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| | - Xia Wang
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| | - Lixin Qiu
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| | - Honggang Wang
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| | - Limei Duan
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Jinghai Liu
- Inner Mongolia Key Lab of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China
| |
Collapse
|
18
|
BiOBr/MoS 2 catalyst as heterogenous peroxymonosulfate activator toward organic pollutant removal: Energy band alignment and mechanism insight. J Colloid Interface Sci 2021; 594:635-649. [PMID: 33780767 DOI: 10.1016/j.jcis.2021.03.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 11/21/2022]
Abstract
Utilization of heterogenous catalysts to trigger peroxymonosulfate (PMS) activation is considered an efficient strategy for environmental decontamination. Herein, a tightly bonded flake-like 2D/2D BiOBr/MoS2 heterojunction was successfully designed through co-precipitation process. By virtue of matched energy levels and intimate interfacial coupling, the Type-II BiOBr/MoS2 heterojunction significantly expedited charge carrier transfer and thereby promoted the catalytic performance for organic dye oxidation and Cr(VI) reduction. The specially designed BiOBr/MoS2 heterojunction is also conducive to split PMS and continuously generated highly active species (SO4-, OH and O2-) in a photo-Fenton system, achieving extraordinary catalytic capacity for various emerging organic pollutants (including phenol, bisphenol A and carbamazepine). The photoexcited electron with prolonged lifetime and exposed Mo sites with multivalence and multiphase nature can effectively activate PMS, which further promotes the oxidation efficiency of holes, as confirmed by scavenging experiments. The excellent stability and oxidative properties could justify scale up using BiOBr/MoS2 to a small pilot test, implementing the potential value in practical applications. This study would provide novel insight and cognition of PMS activation via a superior heterojunction for complex polluted wastewater treatment.
Collapse
|