1
|
Mou Y, Xu C, Sun Z, Liu S, Wang F, Han D, Wang G, Bing L. One-pot synthesis of nano-hierarchical SSZ-13 with superior catalytic performance in methanol-to-olefins reaction. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
2
|
Li C, Jiang Y, Wu Z, Zhang Y, Huang C, Cheng S, You Y, Zhang P, Chen W, Mao L, Jiang L. Mixed Matrix Membrane with Penetrating Subnanochannels: A Versatile Nanofluidic Platform for Selective Metal Ion Conduction. Angew Chem Int Ed Engl 2023; 62:e202215906. [PMID: 36374215 DOI: 10.1002/anie.202215906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Biological ion channels penetrated through cell membrane form unique transport pathways for selective ionic conductance. Replicating the success of ion selectivity with mixed matrix membranes (MMMs) will enable new separation technologies but remains challenging. Herein, we report a soft substrate-assisted solution casting method to develop MMMs with penetrating subnanochannels for selective metal ion conduction. The MMMs are composed of penetrating Prussian white (PW) microcubes with subnanochannels in dense polyimide (PI) matrices, achieving selective monovalent metal ion conduction. The ion selectivity of K+ /Mg2+ is up to 14.0, and the ion conductance of K+ can reach 45.5 μS with the testing diameter of 5 mm, which can be further improved by increasing the testing area. Given the diversity of nanoporous materials and polymer matrices, we expect that the MMMs with penetrating subnanochannels could be developed into a versatile nanofluidic platform for various emerging applications.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zihan Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Youcai Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Cheng Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sha Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ya You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China.,Hubei Longzhong Laboratory, Xiangyang, 441000, P. R. China
| | - Pengchao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.,Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, P. R. China.,Hubei Longzhong Laboratory, Xiangyang, 441000, P. R. China
| | - Wen Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
Hu A, Wang H, Ding J. Preparation of an Ionic Liquid Based on Polystyrene Microspheres to Catalyze the Conversion of Furfuryl Alcohol to Ethyl Levulinate. ChemistrySelect 2022. [DOI: 10.1002/slct.202202447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aiyun Hu
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
- Jiangsu Key Construction Laboratory of IOT Application Technology College of Internet of Things Engineering Wuxi Taihu University Wuxi 214000 China
| | - Haijun Wang
- The Key Laboratory of Food Colloids and Biotechnology Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| | - Jian Ding
- School of Biotechnology Jiangnan University Wuxi 214122 China
| |
Collapse
|
4
|
Yu Z, Ji N, Xiong J, Han Y, Li X, Zhang R, Qiao Y, Zhang M, Lu X. Ultrafine Ruthenium Clusters Shell-Embedded Hollow Carbon Spheres as Nanoreactors for Channel Microenvironment-Modulated Furfural Tandem Hydrogenation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201361. [PMID: 35760757 DOI: 10.1002/smll.202201361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Rationally modulating the catalytic microenvironment is important for targeted induction of specific molecular behaviors to fulfill complicated catalytic purposes. Herein, a metal pre-chelating assisted assembly strategy is developed to facilely synthesize the hollow carbon spheres with ultrafine ruthenium clusters embedded in pore channels of the carbon shell (Ru@Shell-HCSs), which can be employed as nanoreactors with preferred electronic and geometric catalytic microenvironments for the efficient tandem hydrogenation of biomass-derived furfural toward 2-methylfuran. The channel-embedding structure is proved to confer the ultrafine ruthenium clusters with an electron-deficient property via a reinforced interfacial charge transfer mechanism, which prompts the hydrogenolysis of intermediate furfuryl alcohol during the tandem reaction, thus resulting in an enhanced 2-methylfuran generation. Meanwhile, lengthening the shell pore channel can offer reactant molecules with a prolonged diffusion path, and correspondingly a longer retention time in the channel, thereafter delivering an accelerated tandem hydrogenation progression. This paper aims to present a classic case that emphasizes the critical role of precisely controlling the catalytic microenvironment of the metal-loaded hollow nanoreactors in coping with the arduous challenges from multifunctional catalyst-driven complex tandem reactions.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - You Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-Sen University, Guangdong, 510275, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Ming Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| |
Collapse
|
5
|
Ji Y, Zuo Y, Liu H, Wang F, Guo X. Synthesis of Silico-Phospho-Aluminum Nanosheets by Adding Amino Acid and its Catalysis in the Conversion of Furfuryl Alcohol to Fuel Additives. CHEMSUSCHEM 2022; 15:e202200747. [PMID: 35475549 DOI: 10.1002/cssc.202200747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Self-assembled spheres of silico-phospho-aluminum nanosheets were synthesized with the addition of l-arginine and evaluated as catalysts for the valorization of furfuryl alcohol to fuel additives. Adding the amino acid, a bio-derived additive, contributed to higher external specific surface area and more active sites, featuring a simple, environmentally friendly, and feasible strategy to regulate the growth of nanosheets. Herein, in the reaction of furfuryl alcohol with ethanol, the performance of silico-phospho-aluminum nanosheets was significantly improved compared with typical silicon phosphorus aluminum catalyst SAPO-34. The yield of ethyl levulinate with the use of silico-phospho-aluminum nanosheets was 7.8 times higher than for SAPO-34, and meanwhile the amount of undesirable byproduct diethyl ether was decreased by two orders of magnitude and negligibly produced compared with SAPO-34. Moreover, replacing part of aluminum isopropoxide with aluminum sulfate as aluminum source could introduce sulfate in situ in the process of catalyst synthesis and increase the amount of acid sites on the catalyst.
Collapse
Affiliation(s)
- Ying Ji
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yi Zuo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Huifang Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Feng Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
6
|
Wang J, Wang J, Cui H, Li Z, Wang M, Yi W. Spontaneous Biphasic System with Lithium Chloride Hydrate for Efficient Esterification of Levulinic Acid. ChemistrySelect 2022. [DOI: 10.1002/slct.202200347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jinghua Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 China
| | - Jiangang Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 China
| | - Hongyou Cui
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 China
| | - Zhihe Li
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo 255000 China
| | - Ming Wang
- School of Chemistry and Chemical Engineering Shandong University of Technology Zibo 255000 China
| | - Weiming Yi
- School of Agricultural Engineering and Food Science Shandong University of Technology Zibo 255000 China
| |
Collapse
|
7
|
Novel Sulfonic Acid Polystyrene Microspheres for Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate. Catal Letters 2022. [DOI: 10.1007/s10562-021-03881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Song H, Jin F, Liu Q, Liu H. Zeolite-catalyzed acetalization reaction of furfural with alcohol under solvent-free conditions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Versatile Coordination Polymer Catalyst for Acid Reactions Involving Biobased Heterocyclic Chemicals. Catalysts 2021. [DOI: 10.3390/catal11020190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The chemical valorization/repurposing of biomass-derived chemicals contributes to a biobased economy. Furfural (Fur) is a recognized platform chemical produced from renewable lignocellulosic biomass, and furfuryl alcohol (FA) is its most important application. The aromatic aldehydes Fur and benzaldehyde (Bza) are commonly found in the slate of compounds produced via biomass pyrolysis. On the other hand, glycerol (Gly) is a by-product of the industrial production of biodiesel, derived from fatty acid components of biomass. This work focuses on acid catalyzed routes of Fur, Bza, Gly and FA, using a versatile crystalline lamellar coordination polymer catalyst, namely [Gd(H4nmp)(H2O)2]Cl·2H2O (1) [H6nmp=nitrilotris(methylenephosphonic acid)] synthesized via an ecofriendly, relatively fast, mild microwave-assisted approach (in water, 70 °C/40 min). This is the first among crystalline coordination polymers or metal-organic framework type materials studied for the Fur/Gly and Bza/Gly reactions, giving heterobicyclic products of the type dioxolane and dioxane, and was also effective for the FA/ethanol reaction. 1 was stable and promoted the target catalytic reactions, selectively leading to heterobicyclic dioxane and dioxolane type products in the Fur/Gly and Bza/Gly reactions (up to 91% and 95% total yields respectively, at 90 °C/4 h), and, on the other hand, 2-(ethoxymethyl)furan and ethyl levulinate from heterocyclic FA.
Collapse
|
10
|
Zr-DBS with Sulfonic Group: A Green and Highly Efficient Catalyst for Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate. Catal Letters 2021. [DOI: 10.1007/s10562-020-03516-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Yogita, Rao BS, Subrahmanyam C, Lingaiah N. The selective conversion of furfuryl alcohol to ethyl levulinate over Zr-modified tungstophosphoric acid supported on β-zeolites. NEW J CHEM 2021. [DOI: 10.1039/d0nj05296e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalysts of zirconium-exchanged proton-containing tungstophosphoric acid (TPA) supported on β-zeolites were prepared by an impregnation method for the selective alcoholysis of furfuryl alcohol into ethyl levulinate.
Collapse
Affiliation(s)
- Yogita
- Department of Catalysis and Fine Chemicals
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
- India
- CSIR-Academy of Scientific and Innovative Research (CSIR-AcSIR)
| | - B. Srinivasa Rao
- Department of Catalysis and Fine Chemicals
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
- India
| | - Ch. Subrahmanyam
- Department of Chemistry
- Indian Institute of Technology Hyderbad-502285
- India
| | - N. Lingaiah
- Department of Catalysis and Fine Chemicals
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
- India
- CSIR-Academy of Scientific and Innovative Research (CSIR-AcSIR)
| |
Collapse
|