1
|
Wang M, Dai H, Yang Q. Catalytic applications of organic-inorganic hybrid porous materials. Chem Commun (Camb) 2024; 60:13325-13335. [PMID: 39444317 DOI: 10.1039/d4cc04284k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Organic-inorganic hybrid porous materials (OIHMs) inherit the unique properties from both organic and inorganic components, and the flexibility in the incorporation of functional groups renders the OIHMs an ideal platform for the construction of catalytic materials with multiple active sites. The preparation of OIHMs with precise locations of organic-inorganic components and tunable structures is one of the important topics for the catalytic application of OIHMs, but it is still very challenging. In this feature article, we describe our work related to the preparation of OIHMs via confining active sites in the nanostructure and a layer-by-layer assembly method and their applications in acid-base catalysis, catalytic hydrogenation and photocatalysis with a focus on the elucidation of the synergistic effects of different active sites and the unique properties of OIHMs in catalysis.
Collapse
Affiliation(s)
- Maodi Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Huicong Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
3
|
Wei H, Gao Z, Cao L, Li K, Yan X, Liu T, Zhu M, Huang F, Fang X, Lin J. FePO 4 supported Rh subnano clusters with dual active sites for efficient hydrogenation of quinoline under mild conditions. NANOSCALE 2023; 15:1422-1430. [PMID: 36594603 DOI: 10.1039/d2nr05518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemoselective hydrogenation of quinoline and its derivatives under mild reaction conditions still remains a challenging topic, which requires a suitable interaction between reactants and a catalyst to achieve high performance and stability. Herein, FePO4-supported Rh single atoms, subnano clusters and nanoparticle catalysts were synthesized and evaluated in the chemoselective hydrogenation of quinoline. The results show that the Rh subnano cluster catalyst with a size of ∼1 nm gives a specific reaction rate of 353 molquinoline molRh-1 h-1 and a selectivity of >99% for 1,2,3,4-tetrahydroquinoline under mild conditions of 50 °C and 5 bar H2, presenting better performance compared with the Rh single atoms and nanoparticle counterparts. Moreover, the Rh subnano cluster catalyst exhibits good stability and substrate universality for the hydrogenation of various functionalized quinolines. A series of characterization studies demonstrate that the acidic properties of the FePO4 support favors the adsorption of quinoline while the Rh subnano clusters promote the dissociation of H2 molecules, and then contribute to the enhanced hydrogenation performance. This work provides an important implication to design efficient Rh-based catalysts for chemoselective hydrogenation under mild conditions.
Collapse
Affiliation(s)
- Haisheng Wei
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Zhaohua Gao
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Liru Cao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.
| | - Kairui Li
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Xiaorui Yan
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Tiantian Liu
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Mingyuan Zhu
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Fei Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Xu Fang
- Department College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China.
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.
| |
Collapse
|
4
|
Zhang Y, Yu W, Cao S, Sun Z, Nie X, Liu Y, Zhao Z. Photocatalytic Chemoselective Transfer Hydrogenation of Quinolines to Tetrahydroquinolines on Hierarchical NiO/In 2O 3–CdS Microspheres. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weiwei Yu
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuo Cao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhe Sun
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|