1
|
Liu X, Han B, Wu C, Zhou P, Jia M, Zhu L, Zhang Z. Manganese Carbodiimide (MnNCN): A New Heterogeneous Mn Catalyst for the Selective Synthesis of Nitriles from Alcohols. Angew Chem Int Ed Engl 2025; 64:e202413799. [PMID: 39283173 DOI: 10.1002/anie.202413799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 11/03/2024]
Abstract
Earth-abundant manganese oxides (MnOx) were competitive candidates when screening catalysts for ammoxidation of alcohols into nitriles due to their redox property. However, over-oxidation and possible acid-catalyzed hydrolysis of nitriles into amides still limited the application of MnOx in nitrile synthesis. In this work, manganese carbodiimide (MnNCN) was first reported to be robust for the ammoxidation of alcohols into nitriles, avoiding over-oxidation and the hydrolysis. Besides the high activity and selectivity, MnNCN demonstrated wide substrate scope including the ammoxidation of primary alcohols into nitriles, the oxidative C-C bonds cleavage and ammoxidation of secondary alcohols, phenyl substituted aliphatic alcohols, and diols into nitriles. Controlled experiments and DFT calculation results revealed that the excellent catalytic performance of MnNCN originated from its high ability in the activation of O2 molecules, and favorable oxidative dehydrogenation of C=N bonds in the aldimine intermediates (RCH=NH) into nitriles, inhibiting the competitive side reaction of the oxidation of aldehydes into carboxylic acids, followed to amide byproducts. Moreover, the hydrolysis of nitriles was also inhibited over MnNCN for its weak acidity as compared with MnOx. This study provided new insights into Mn-catalyzed aerobic oxidations as a highly important complement to manganese oxides.
Collapse
Affiliation(s)
- Xixi Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Bo Han
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Chongbei Wu
- Hebei Vocational University of Technology and Engineering, Hebei, 054000, PR China
| | - Peng Zhou
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Meilin Jia
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot, 010022, P. R.China
| | - Liangfang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Wu X, Guo H, Jia L, Xiao Y, Hou B, Li D. Effect of MnO2 Crystal Type on the Oxidation of Furfural to Furoic Acid. Catalysts 2023. [DOI: 10.3390/catal13040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The base-free oxidation of furfural by non-noble metal systems has been challenging. Although MnO2 emerges as a potential catalyst application in base-free conditions, its catalytic efficiency still needs to be improved. The crystalline form of MnO2 is an important factor affecting the oxidation ability of furfural. For this reason, four crystalline forms of MnO2 (α, β, γ, and δ-MnO2) were selected. Their oxidation performance and surface functional groups were analyzed and compared in detail. Only δ-MnO2 exhibited excellent activity, achieving 99.04% furfural conversion and 100% Propo.FA (Only furoic acid was detected by HPLC in the product) under base-free conditions, while the furfural conversion of α, β, and γ-MnO2 was below 10%. Characterization by XPS, IR, O2-TPD and other means revealed that δ-MnO2 has the most abundant active oxygen species and surface hydroxyl groups, which are responsible for the best performance of δ-MnO2. This work achieves the green and efficient oxidation of furfural to furoic acid over non-noble metal catalysts.
Collapse
|
3
|
Su K, Zhang C, Wang Y, Zhang J, Guo Q, Gao Z, Wang F. Unveiling the highly disordered NbO6 units as electron-transfer sites in Nb2O5 photocatalysis with N-hydroxyphthalimide under visible light irradiation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Dong Y, Li T, You X, You Q, Sun L, Xie G. A novel approach to synthesize dichlorobenzonitriles by selective ammoxidation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Hui Y, Zheng J, Qin Y, Du X, Zu Y, Yang J, Sun S, Gao X, Sun Z, Song L. Insight into the Nature and the Transformation of the Hydroxyl Species in the CeY zeolite. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01564h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nature and the transformation of each potential hydroxyl species in a Ce-modified Y zeolite during the calcination process have been investigated via the information of the hydroxyl spectra of...
Collapse
|