1
|
Wang Y, Chen B, Li L, Mei X, Gu Y, Wu H, He M, Han B. Thermally-Stable Single-Site Pd on CeO 2 Catalyst for Selective Amination of Phenols to Aromatic Amines without External Hydrogen. Angew Chem Int Ed Engl 2024; 63:e202412062. [PMID: 39315608 DOI: 10.1002/anie.202412062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Developing a new route to produce aromatic amines as key chemicals from renewable phenols is a benign alternative to current fossil-based routes like nitroaromatic hydrogenation, but is challenging because of the high dissociation energy of the Ar-OH bond and difficulty in controlling side reactions. Herein, an aerosolizing-pyrolysis strategy was developed to prepare high-density single-site cationic Pd species immobilized on CeO2 (Pd1/CeO2) with excellent sintering resistance. The obtained Pd1/CeO2 catalysts achieved remarkable selectivity of important aromatic amines (yield up to 76.2 %) in the phenols amination with amines without external hydrogen sources, while Pd nano-catalysts mainly afforded phenyl-ring-saturation products. The excellent catalytic properties of the Pd1/CeO2 are closely related to high-loading Pd single-site catalysts with abundant surface defect sites and suitable acid-base properties. This report provides a sustainable route for producing aromatic amines from renewable feedstocks.
Collapse
Affiliation(s)
- Yaqin Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201800, P. R. China
| | - Xuelei Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| |
Collapse
|
2
|
Yang C, Idriss H, Wang Y, Wöll C. Surface Structure and Chemistry of CeO 2 Powder Catalysts Determined by Surface-Ligand Infrared Spectroscopy (SLIR). Acc Chem Res 2024; 57:3316-3326. [PMID: 39476853 PMCID: PMC11580167 DOI: 10.1021/acs.accounts.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/20/2024]
Abstract
ConspectusCerium is the most abundant rare earth element in the Earth's crust. Its most stable oxide, cerium dioxide (CeO2, ceria), is increasingly utilized in the field of catalysis. It can catalyze redox and acid-base reactions, and serve as a component of electrocatalysts and even photocatalysts. As one of the most commonly used in situ/operando characterization methods in catalysis, infrared (IR) spectroscopy is routinely employed to monitor reaction intermediates on the surface of solid catalysts, offering profound insight into reaction mechanisms. Additionally, IR vibrational frequencies of probe molecules adsorbed on solid catalysts provide detailed information about their structure and chemical states. Numerous studies in the literature have utilized carbon monoxide and methanol as IR probe molecules on ceria particles. However, assigning their vibrational frequencies is often highly controversial due to the great complexity of the actual surface of ceria particles, which include differently oriented crystal facets, reconstructions, defects, and other structural variations. In our laboratory, taking bulk ceria single crystals with distinct orientations as model systems, we employed a highly sensitive ultrahigh vacuum (UHV) infrared spectroscopy system (THEO) to study the adsorption of CO and methanol. It turns out that the theoretical calculations adopting hybrid functionals (HSE06) can bring the theoretical predictions into agreement with the experimental results for the CO frequencies on ceria single crystal surfaces. The obtained frequencies serve as reliable references to resolve the long-standing controversial assignments for the IR bands of CO and methanol adsorbed on ceria particles. Furthermore, these characteristic frequencies allow for the determination of orientations, oxidation states and restructuring of exposed crystal facets of ceria nanoparticles, which is applicable from UHV conditions to industrially relevant pressures of up to 1 bar, and from low temperatures (∼65 K) to high temperatures (∼1000 K). We also used molecular oxygen as a probe molecule to investigate its interaction with the ceria surface, crucial for understanding ceria's redox properties. Our findings reveal that the localization of oxygen vacancies and the mechanism of dioxygen activation are highly sensitive to surface orientations. We provided the first spectroscopic evidence showing that the oxygen vacancies on ceria (111) surfaces tend to localize in deep layers. In addition, we employed N2O as a probe molecule to elucidate the origin of the photocatalytic activity of ceria and showed that the photocatalytic activity is highly sensitive to the surface orientation (i.e., surface coordination structure). This Account shows that probe-molecule infrared spectroscopy serves as a powerful in situ/operando tool for studying the surface structure and chemistry of solid catalysts, and the knowledge gained through the "Surface Science" approach is essential as a crucial benchmark.
Collapse
Affiliation(s)
- Chengwu Yang
- School
of Energy and Power Engineering, Beihang
University, Beijing 100191, China
| | - Hicham Idriss
- Institute
of Functional Interfaces, Karlsruhe Institute
of Technology (KIT), 76021 Karlsruhe, Germany
| | - Yuemin Wang
- Institute
of Functional Interfaces, Karlsruhe Institute
of Technology (KIT), 76021 Karlsruhe, Germany
| | - Christof Wöll
- Institute
of Functional Interfaces, Karlsruhe Institute
of Technology (KIT), 76021 Karlsruhe, Germany
| |
Collapse
|
3
|
Chakarova KK, Mihaylov MY, Karapenchev BS, Koleva IZ, Vayssilov GN, Aleksandrov HA, Hadjiivanov KI. N 2 as an Efficient IR Probe Molecule for the Investigation of Ceria-Containing Materials. Molecules 2024; 29:3608. [PMID: 39125011 PMCID: PMC11314509 DOI: 10.3390/molecules29153608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Ceria and ceria-based catalysts are very important in redox and acid-base catalysis. Nanoceria have also been found to be important in biomedical applications. To design efficient materials, it is necessary to thoroughly understand the surface chemistry of ceria, and one of the techniques that provides such information about the surface is the vibrational spectroscopy of probe molecules. Although the most commonly used probe is CO, it has some disadvantages when applied to ceria and ceria-based catalysts. CO can easily reduce the material, forming carbonate-like species, and can be disproportionate, thus modifying the surface. Here, we offer a pioneering study of the adsorption of 15N2 at 100 K, demonstrating that dinitrogen can be more advantageous than CO when studying ceria-based materials. As an inert gas, N2 is not able to oxidize or reduce cerium cations and does not form any surface anionic species able to modify the surface. It is infrared and transparent, and thus there is no need to subtract the gas phase spectrum, something that often increases the noise level. Being a weaker base than CO, N2 has a negligible induction effect. By using stoichiometric nano-shaped ceria samples, we concluded that 15N2 can distinguish between surface Ce4+ sites on different, low index planes; with cations on the {110} facets and on some of the edges, Ce4+-15N2 species with IR bands at 2258-2257 cm-1 are formed. Bridging species, where one of the N atoms from the molecule interacts with two Ce4+ cations, are formed on the {100} facets (2253-2252 cm-1), while the interaction with the {111} facets is very weak and does not lead to the formation of measurable amounts of complexes. All species are formed by electrostatic interaction and disappear during evacuation at 100 K. In addition, N2 provides more accurate information than CO on the acidity of the different OH groups because it does not change the binding mode of the hydroxyls.
Collapse
Affiliation(s)
- Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.S.K.); (H.A.A.); (K.I.H.)
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.S.K.); (H.A.A.); (K.I.H.)
| | - Bayan S. Karapenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.S.K.); (H.A.A.); (K.I.H.)
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria; (I.Z.K.); (G.N.V.)
| | - Iskra Z. Koleva
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria; (I.Z.K.); (G.N.V.)
| | - Georgi N. Vayssilov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria; (I.Z.K.); (G.N.V.)
| | - Hristiyan A. Aleksandrov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.S.K.); (H.A.A.); (K.I.H.)
- Faculty of Chemistry and Pharmacy, University of Sofia, 1126 Sofia, Bulgaria; (I.Z.K.); (G.N.V.)
| | - Konstantin I. Hadjiivanov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.S.K.); (H.A.A.); (K.I.H.)
| |
Collapse
|
4
|
Abdulwahab K, Khan MM, Jennings JR. Doped Ceria Nanomaterials: Preparation, Properties, and Uses. ACS OMEGA 2023; 8:30802-30823. [PMID: 37663502 PMCID: PMC10468777 DOI: 10.1021/acsomega.3c01199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 09/05/2023]
Abstract
Doping is a powerful strategy for enhancing the performance of ceria (CeO2) nanomaterials in a range of catalytic, photocatalytic, biomedical, and energy applications. The present review summarizes recent developments in the doping of ceria nanomaterials with metal and non-metal dopants for selected applications. The most important metal dopants are grouped into s, p, d, and f block elements, and the relevant synthetic methods, novel properties, and key applications of metal doped ceria are collated and critically discussed. Non-metal dopants are similarly examined and compared with metal dopants using the same performance criteria. The review reveals that non-metal (N, S, P, F, and Cl) doped ceria has mainly been synthesized by calcination and hydrothermal methods, and it has found applications mostly in photocatalysis or as a cathode material for LiS batteries. In contrast, metal doped ceria nanomaterials have been prepared by a wider range of synthetic routes and evaluated for a larger number of applications, including as catalysts or photocatalysts, as antibacterial agents, and in devices such as fuel cells, gas sensors, and colorimetric detectors. Dual/co-doped ceria containing both metals and non-metals are also reviewed, and it is found that co-doping often leads to improved properties compared with single-element doping. The review concludes with a future outlook that identifies unaddressed issues in the synthesis and applications of doped ceria nanomaterials.
Collapse
Affiliation(s)
- Khadijat
Olabisi Abdulwahab
- Applied
Physics, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
- Department
of Chemistry, Faculty of Science, University
of Lagos, Akoka, Yaba, Lagos 101017, Nigeria
| | - Mohammad Mansoob Khan
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan
Tungku Link, Gadong BE
1410, Brunei Darussalam
- Optoelectronic
Device Research Group, Universiti Brunei
Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei
Darussalam
| | - James Robert Jennings
- Applied
Physics, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam
- Optoelectronic
Device Research Group, Universiti Brunei
Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei
Darussalam
| |
Collapse
|
5
|
Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Schweke D, Rubin A, Rabinovitch L, Kraynis O, Livneh T. Cerium metal oxidation studied by IR reflection-absorption and Raman scattering spectroscopies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:324002. [PMID: 35609613 DOI: 10.1088/1361-648x/ac730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Oxidation of cerium metal is a complex process which is strongly affected by the presence of water vapor in the oxidative atmosphere. Here, we explore, by means of infrared reflection-absorption spectroscopy (IRRAS) and Raman scattering spectroscopies, thin oxide films, formed on cerium metal during oxidation, under dry vs ambient (humid) air conditions (∼0.2% and ∼50% relative humidities, respectively) and compare them with a thin film of CeO2deposited on a Si substrate. Complementary analysis of the thin films using x-ray diffraction and focused ion beam-scanning electron microscopy enables the correlation between their structure and spectroscopic characterizations. The initial oxidation of cerium metal results in the formation of highly sub-stoichiometric CeO2-x. Under dry air conditions, a major fraction of that oxide reacts with oxygen to form CeO∼2, which is spectroscopically detected by Raman scatteringF2gsymmetry mode and by IRAASF1usymmetry mode, splitted into doubly-degenerate transverse optic and mono-degenerate longitudinally optic (LO) modes. In contrast, under ambient (humid) conditions, the oxide formed is more heterogenous, as the reaction of CeO2-xdiverges towards the dominant formation of Ce(OH)3. Prior to the spectral emergence of Ce(OH)3, hydrogen ions incorporate into the highly sub-stoichiometric oxide, as manifested by Ce-H local vibrational mode detected in the Raman spectrum. The spectroscopic response of the thin oxide layer thus formed is more complex; particularly noted is the absence of the LO mode. It is attributed to the high density of microstructural and compositional defects in the oxide layer, which results in a heterogenous dielectric nature of the thin film, far from being representable by a single phase of CeO∼2.
Collapse
Affiliation(s)
- Danielle Schweke
- Department of Physics, Nuclear Research Center, Negev, PO Box 9001, Beer-Sheva 84190, Israel
| | - Alon Rubin
- Department of Physics, Nuclear Research Center, Negev, PO Box 9001, Beer-Sheva 84190, Israel
| | - Lior Rabinovitch
- Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Olga Kraynis
- Department Materials & Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tsachi Livneh
- Department of Physics, Nuclear Research Center, Negev, PO Box 9001, Beer-Sheva 84190, Israel
| |
Collapse
|
7
|
Hu L, Mo X, Chen L, Wu Y, Liu F, Yin K, Fan T, Yan Z. Core‐Shell ZIF‐67@CeO
2
Nanosphere as Efficient Acid‐Base Catalyst for the Cycloaddition of CO
2
and Epoxides. ChemistrySelect 2022. [DOI: 10.1002/slct.202200823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lihua Hu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi University Nanning 530004 China
- School of Environmental Engineering Nanjing Institute of Technology Nanjing 211167 China
- Guangdong Provincial Key Lab of Green Chemical Product Technology Guangzhou 510640 China
| | - Xiaohong Mo
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Li Chen
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Yuehang Wu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Feng Liu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Kangling Yin
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Taotao Fan
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
| | - Zongcheng Yan
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Lab of Green Chemical Product Technology Guangzhou 510640 China
| |
Collapse
|
8
|
Abstract
The preferential CO oxidation (so-called CO-PROX) is the selective CO oxidation amid H2-rich atmospheres, a process where ceria-based materials are consolidated catalysts. This article aims to disentangle the potential CO–H2 synergism under CO-PROX conditions on the low-index ceria surfaces (111), (110) and (100). Polycrystalline ceria, nanorods and ceria nanocubes were prepared to assess the physicochemical features of the targeted surfaces. Diffuse reflectance infrared Fourier-transformed spectroscopy (DRIFTS) shows that ceria surfaces are strongly carbonated even at room temperature by the effect of CO, with their depletion related to the CO oxidation onset. Conversely, formate species formed upon OH + CO interaction appear at temperatures around 60 °C and remain adsorbed regardless the reaction degree, indicating that these species do not take part in the CO oxidation. Density functional theory calculations (DFT) reveal that ceria facets exhibit high OH coverages all along the CO-PROX reaction, whilst CO is only chemisorbed on the (110) termination. A CO oxidation mechanism that explains the early formation of carbonates on ceria and the effect of the OH coverage in the overall catalytic cycle is proposed. In short, hydroxyl groups induce surface defects on ceria that increase the COx–catalyst interaction, revealed by the CO adsorption energies and the stabilization of intermediates and readsorbed products. In addition, high OH coverages are shown to facilitate the hydrogen transfer to form less stable HCOx products, which, in the case of the (110) and (100), is key to prevent surface poisoning. Altogether, this work sheds light on the yet unclear CO–H2 interactions on ceria surfaces during CO-PROX reaction, providing valuable insights to guide the design of more efficient reactors and catalysts for this process.
Collapse
|