1
|
Wu B, Yang B, Wu X, Kuo DH, Su Z, Chen L, Zhang P, Mosisa MT, Lu D, Yuan Z, Lin J, Chen X. Synergistic Tuning of Heterovalent States and Oxygen-Vacancy Defect Engineering in Hydrophilic W-Doped Sb 2OS 2 for Enhanced Nitrogen Photoreduction to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58764-58779. [PMID: 39412406 DOI: 10.1021/acsami.4c16630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Nitrogen fixation reaction via photocatalysis offers a green and promising strategy for renewable NH3 synthesis, and catalysts with high-efficiency photocatalytic properties are essential to the process. Herein, we demonstrate a W-doped Sb2OS2 bimetal oxysulfide catalyst (labeled as SbWOS) with abundant oxygen vacancies, heterovalent metal states, and hydrophilic surfaces for nitrogen photoreduction to ammonia. The SbWOS-3 with suitable W-doping exhibited excellent nitrogen fixation activity of 408.08 μmol·g-1·h-1 and an apparent quantum efficiency (AQE) of 1.88% at 420 nm and a solar-to-ammonia (STA) conversion efficiency of 0.082% in pure water under AM1.5G light irradiation. The W-doping not only transforms hydrophobic Sb2OS2 into a hydrophilic catalyst, making it easier for H2O molecules adsorbed on the SbWOS surface and catalyzed into protons, but also endows the SbWOS catalyst with rich oxygen vacancies, acting as the active sites for trapping and activating the N2 molecule, and for trapping and activating H2O to produce the protons for the N2 photocatalytic reduction reaction. The hydrazine drives the SbWOS catalyst with the heterovalent metal states, which acts as the photogenerate electrons quickly hopping between W5+ and W6+ to transfer for the N2 reduction reaction. This study provides a feasible scheme for applying oxygen vacancy defects, heterovalent metal states, and surface hydrophobic-to-hydrophilic wetting engineering in bimetal oxysulfide for N2 photoreduction to ammonia.
Collapse
Affiliation(s)
- Binghong Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoqian Yang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinru Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Zhengjie Su
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longyan Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengkun Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengistu Tadesse Mosisa
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongfang Lu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinguo Lin
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Lv SH, Wang Y, Wang DB, Song CX. Defect Engineering in Bi-Based Photo/Electrocatalysts for Nitrogen Reduction to Ammonia. Chemistry 2024; 30:e202400342. [PMID: 38687194 DOI: 10.1002/chem.202400342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Main group Bi-based materials have gained popularity as N2 reduction reaction (NRR) photo/electrocatalysts due to their ability to inhibit competitive H2 evolution reactions (HER) and the unique N2 adsorption activities. The introduction of defects in Bi-based catalysts represents a highly effective strategy for enhancing light absorption, promoting efficient separation of photogenerated carriers, optimizing the activity of free radicals, regulating electronic structure, and improving catalytic performance. In this review, we outline the various applications of state of the defect engineering in Bi-based catalysts and elucidate the impact of vacancies on NRR performance. In particular, the types of defects, methods of defects tailoring, advanced characterization techniques, as well as the Bi-based catalysts with abundant defects and their corresponding catalytic behavior in NRR were elucidated in detail. Finally, the main challenges and opportunities for future development of defective Bi-based NRR catalysts are discussed, which provides a comprehensive theoretical guidance for this field.
Collapse
Affiliation(s)
- Shuhua H Lv
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| | - Ying Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Debao B Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| | - Caixia X Song
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| |
Collapse
|
3
|
Huang X, Du R, Zhang Y, Ren J, Yang Q, Wang K, Ni Y, Yao Y, Ali Soomro R, Guo L, Yang C, Wang D, Xu B, Fu F. Modulating charge oriented accumulation via interfacial chemical-bond on In 2O 3/Bi 2MoO 6 heterostructures for photocatalytic nitrogen fixation. J Colloid Interface Sci 2024; 664:33-44. [PMID: 38458053 DOI: 10.1016/j.jcis.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Photocatalytic nitrogen fixation presents an eco-friendly approach to converting atmospheric nitrogen into ammonia (NH3), but the process faces challenges due to rapid interface charge recombination. Here, we report an innovative charge transfer and oriented accumulation strategy using an In-O-Mo bond-modulated S-scheme heterostructure composed of In2O3/Bi2MoO6 (In/BMO) synthesized using a simple electrostatic assembly. The unique interfacial arrangement with optimal photocatalyst configuration (3 % In/BMO) enabled enhanced photogenerated electron separation and transfer, leading to a remarkable nitrogen fixation rate of approximately 150.9 μmol·gcat-1·h-1 under visible light irradiation. The performance of the photocatalyst was 9-fold and 27-fold higher than that of its pristine components, Bi2MoO6 and In2O3, respectively. The experimental and theoretical evaluation deemed interfacial In-O-Mo bonds crucial for rapid transfer and charge-oriented accumulation. Whereas the generated internal electric field drove the spatial separation and transfer of photo-generated electrons and holes, significantly enhancing the photocatalytic N2-to-NH3 conversion efficiency. The proposed work lays the foundation for designing S-scheme heterostructures with highly efficient interfacial bonds, offering a promising avenue for substantial improvements in photocatalytic nitrogen fixation.
Collapse
Affiliation(s)
- Xin Huang
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Rui Du
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yuanyuan Zhang
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Jingyu Ren
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Qisheng Yang
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Kangning Wang
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yang Ni
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yuqi Yao
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Razium Ali Soomro
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Li Guo
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Chunming Yang
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Danjun Wang
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Bin Xu
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Feng Fu
- Yan'an Key Laboratory of Green Catalysis and Quality Improvement and Utilization of Low Rank Coal, College of Chemistry & Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|
4
|
Yuan J, Feng W, Zhang Y, Xiao J, Zhang X, Wu Y, Ni W, Huang H, Dai W. Unraveling Synergistic Effect of Defects and Piezoelectric Field in Breakthrough Piezo-Photocatalytic N 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303845. [PMID: 37638643 DOI: 10.1002/adma.202303845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/27/2023] [Indexed: 08/29/2023]
Abstract
Piezo-photocatalysis is a frontier technology for converting mechanical and solar energies into crucial chemical substances and has emerged as a promising and sustainable strategy for N2 fixation. Here, for the first time, defects and piezoelectric field are synergized to achieve unprecedented piezo-photocatalytic nitrogen reduction reaction (NRR) activity and their collaborative catalytic mechanism is unraveled over BaTiO3 with tunable oxygen vacancies (OVs). The introduced OVs change the local dipole state to strengthen the piezoelectric polarization of BaTiO3 , resulting in a more efficient separation of photogenerated carrier. Ti3+ sites adjacent to OVs promote N2 chemisorption and activation through d-π back-donation with the help of the unpaired d-orbital electron. Furthermore, a piezoelectric polarization field could modulate the electronic structure of Ti3+ to facilitate the activation and dissociation of N2 , thereby substantially reducing the reaction barrier of the rate-limiting step. Benefitting from the synergistic reinforcement mechanism and optimized surface dynamics processes, an exceptional piezo-photocatalytic NH3 evolution rate of 106.7 µmol g-1 h-1 is delivered by BaTiO3 with moderate OVs, far surpassing that of previously reported piezocatalysts/piezo-photocatalysts. New perspectives are provided here for the rational design of an efficient piezo-photocatalytic system for the NRR.
Collapse
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha, 410022, P. R. China
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jianyu Xiao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiaoyan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yinting Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wenkang Ni
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Wenxin Dai
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
5
|
Liu J, Xie Y, Wang Y, Yang K, Su S, Ling Y, Chen P. Synergistic coupling of interface ohmic contact and LSPR effects over Au/Bi 24O 31Br 10 nanosheets for visible-light-driven photocatalytic CO 2 reduction to CO. Chem Sci 2023; 14:13518-13529. [PMID: 38033891 PMCID: PMC10685320 DOI: 10.1039/d3sc03474g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
The challenge of synergistically optimizing different mechanisms limits the further improvement of plasmon-mediated photocatalytic activities. In this work, an Au/Bi24O31Br10 composite, combining an interface ohmic contact and localized surface plasmon resonance (LSPR), is prepared by a thermal reduction method. The LSPR effect induces the local resonance energy transfer effect and the local electric field enhancement effect, while the interface ohmic contact forms a stronger interface electric field. The novel synergistic interaction between the interface ohmic contact and LSPR drives effective charge separation and provides more active sites for the adsorption and activation of CO2 with improved photocatalytic efficiency. The optimized 0.6 wt% Au (5.7 nm) over Bi24O31Br10 nanosheets showed an apparently improved photocatalytic activity without any sacrificial reagents, specifically CO and O2 yields of 44.92 and 17.83 μmol g-1 h-1, and demonstrated superior stability (only lost 6%) after continuous reaction for 48 h, nearly 5-fold enhanced compared to Bi24O31Br10 and a great advantage compared with other bismuth-based photocatalysts.
Collapse
Affiliation(s)
- Jie Liu
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| | - Yu Xie
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| | - Yiqiao Wang
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| | - Kai Yang
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| | - Shuping Su
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| | - Yun Ling
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| | - Pinghua Chen
- School of Environmental and Chemical Engineering, Nanchang Hangkong University No. 696 South Fenghe Avenue Nanchang 330063 Jiangxi China
| |
Collapse
|
6
|
Barawi M, García-Tecedor M, Gomez-Mendoza M, Gorni G, Liras M, de la Peña O'Shea VA, Collado L. Light-Driven Nitrogen Fixation to Ammonia over Aqueous-Dispersed Mo-Doped TiO 2 Colloidal Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53382-53394. [PMID: 37950688 DOI: 10.1021/acsami.3c10396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
Photocatalytic nitrogen fixation to ammonia and nitrates holds great promise as a sustainable route powered by solar energy and fed with renewable energy resources (N2 and H2O). This technology is currently under deep investigation to overcome the limited efficiency of the process. The rational design of efficient and robust photocatalysts is crucial to boost the photocatalytic performance. Widely used bulk materials generally suffer from charge recombination due to poor interfacial charge transfer and difficult surface diffusion. To overcome this limitation, this work explores the use of aqueous-dispersed colloidal semiconductor nanocrystals (NCs) with precise morphological control, better carrier mobility, and stronger redox ability. Here, the TiO2 framework has been modified via aliovalent molybdenum doping, and resulting Mo-TiO2 NCs have been functionalized with charged terminating hydroxyl groups (OH-) for the simultaneous production of ammonia, nitrites, and nitrates via photocatalytic nitrogen reduction in water, which has not been previously found in the literature. Our results demonstrate the positive effect of Mo-doping and nanostructuration on the overall N2 fixation performance. Ammonia production rates are found to be dependent on the Mo-doping loading. 5Mo-TiO2 delivers the highest NH4+ yield rate (ca. 105.3 μmol g-1 L-1 h-1) with an outstanding 90% selectivity, which is almost four times higher than that obtained over bare TiO2. The wide range of advance characterization techniques used in this work reveals that Mo-doping enhances charge-transfer processes and carriers lifetime as a consequence of the creation of new intra band gap states in Mo-doped TiO2 NCs.
Collapse
Affiliation(s)
- Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid 28935, Spain
| | - Miguel García-Tecedor
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid 28935, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid 28935, Spain
| | - Giulio Gorni
- CLÆSS Beamline, CELLS-ALBA Synchrotron, carrer de la Llum, 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
- Laser Processing Group, Instituto de Óptica (CSIC), c/Serrano 121, Madrid 28006, Spain
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid 28935, Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid 28935, Spain
| | - Laura Collado
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra, 3, Móstoles, Madrid 28935, Spain
| |
Collapse
|
7
|
Zuo C, Su Q, Yu L. Research Progress in Composite Materials for Photocatalytic Nitrogen Fixation. Molecules 2023; 28:7277. [PMID: 37959696 PMCID: PMC10650292 DOI: 10.3390/molecules28217277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Ammonia is an essential component of modern chemical products and the building unit of natural life molecules. The Haber-Bosch (H-B) process is mainly used in the ammonia synthesis process in the industry. In this process, nitrogen and hydrogen react to produce ammonia with metal catalysts under high temperatures and pressure. However, the H-B process consumes a lot of energy and simultaneously emits greenhouse gases. In the "double carbon" effect, to promote the combination of photocatalytic technology and artificial nitrogen fixation, the development of green synthetic reactions has been widely discussed. Using an inexhaustible supply of sunlight as a power source, researchers have used photocatalysts to reduce nitrogen to ammonia, which is energy-dense and easy to store and transport. This process completes the conversion from light energy to chemical energy. At the same time, it achieves zero carbon emissions, reducing energy consumption and environmental pollution in industrial ammonia synthesis from the source. The application of photocatalytic technology in the nitrogen cycle has become one of the research hotspots in the new energy field. This article provides a classification of and an introduction to nitrogen-fixing photocatalysts reported in recent years and prospects the future development trends in this field.
Collapse
Affiliation(s)
| | | | - Lei Yu
- College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China; (C.Z.); (Q.S.)
| |
Collapse
|
8
|
Recent Developments and Perspectives of Cobalt Sulfide-Based Composite Materials in Photocatalysis. Catalysts 2023. [DOI: 10.3390/catal13030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Photocatalysis, as an inexpensive and safe technology to convert solar energy, is essential for the efficient utilization of sustainable renewable energy sources. Earth-abundant cobalt sulfide-based composites have generated great interest in the field of solar fuel conversion because of their cheap, diverse structures and facile preparation. Over the past 10 years, the number of reports on cobalt sulfide-based photocatalysts has increased year by year, and more than 500 publications on the application of cobalt sulfide groups in photocatalysis can be found in the last three years. In this review, we initially summarize the four common strategies for preparing cobalt sulfide-based composite materials. Then, the multiple roles of cobalt sulfide-based cocatalysts in photocatalysis have been discussed. After that, we present the latest progress of cobalt sulfide in four fields of photocatalysis application, including photocatalytic hydrogen production, carbon dioxide reduction, nitrogen fixation, and photocatalytic degradation of pollutants. Finally, the development prospects and challenges of cobalt sulfide-based photocatalysts are discussed. This review is expected to provide useful reference for the construction of high-performance cobalt sulfide-based composite photocatalytic materials for sustainable solar-chemical energy conversion.
Collapse
|
9
|
Yu X, Qiu P, Wang Y, He B, Xu X, Zhu H, Ding J, Liu X, Li Z, Wang Y. Defect-induced charge redistribution of MoO 3-x nanometric wires for photocatalytic ammonia synthesis. J Colloid Interface Sci 2023; 640:775-782. [PMID: 36907146 DOI: 10.1016/j.jcis.2023.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Photocatalytic ammonia synthesis technology has become one of the effective methods to replace the Haber method for nitrogen fixation in the future for its low energy consumption and green environment. However, limited by the weak adsorption/activation ability of N2 molecules at the photocatalyst interface, the efficient nitrogen fixation still remains a daunting job. Defect-induced charge redistribution as a catalytic site for N2 molecules is the most prominent strategy to enhance the adsorption/activation of N2 molecules at the interface of catalysts. In this study, MoO3-x nanowires containing asymmetric defects were prepared by a one-step hydrothermal method via using glycine as a defect inducer. It is shown that at the atomic scale, the defect-induced charge reconfiguration can significantly improve the nitrogen adsorption and activation capacity and enhance the nitrogen fixation capacity; at the nanoscale, the charge redistribution induced by asymmetric defects effectively improved the photogenerated charge separation. Given the charge redistribution on the atomic and nanoscale of MoO3-x nanowires, the optimal nitrogen fixation rate of MoO3-x reached 200.35 µmol g-1h-1.
Collapse
Affiliation(s)
- Xinru Yu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Peng Qiu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yongchao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Bing He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| | - Xiangran Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Huiling Zhu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Jian Ding
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xueqin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Zhen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Yang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Guan C, Hou T, Nie W, Zhang Q, Duan L, Zhao X. Enhanced photocatalytic reduction of CO 2 on BiOBr under synergistic effect of Zn doping and induced oxygen vacancy generation. J Colloid Interface Sci 2023; 633:177-188. [PMID: 36446210 DOI: 10.1016/j.jcis.2022.11.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/06/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
In this work, different BiOBr powders (without and with Zn doping) were prepared. Their specific properties and photocatalytic performance were studied. Zn doped BiOBr showed higher carrier transportation ability, beneficial to high performance photocatalysis. Further analysis and theoretical calculations unveiled that Zn doping resulted in more dispersive energy band structure with improved oxygen vacancy (OV) generation due to lattice distortion. OV acted as trap centers, playing dominant role in carrier transportation enhancement, which also synergized with more dispersive energy band due to Zn doping, improving carrier separation and transfer. Besides, Zn doping would further strengthen trapping effect under OV existence, stimulating synergistic enhancement to spatial charge separation and transfer with OV. With synergy of Zn doping and OV, Zn doped samples produced 1.75 times higher CH4 generation during gas-solid photocatalytic reduction of CO2 under visible light, testifying successful conducting of Zn doping improved photocatalytic capacity on BiOBr.
Collapse
Affiliation(s)
- Chongshang Guan
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China; Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Tian Hou
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China; Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Wuyang Nie
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China; Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Qian Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China; Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Libing Duan
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China; Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Xiaoru Zhao
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China; Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China.
| |
Collapse
|
11
|
Wang Y, Ban C, Meng J, Ma J, Zou H, Feng Y, Ding J, Duan Y, Gan L, Zhou X. Charge Localization Induced by Fe Doping in Porous Bi5O7I Micro-flower for Enhanced Photoreduction of CO2 to CO. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Wu D, Zeng L, Liu Y, Yuan C, Xue X, Zhang X. Design of 2D/2D heterojunction of Ti3C2/BiOClxBr1-x for enhancing photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Oxygen-vacancy-rich Ag/Bi5O7Br nanosheets enable improved photocatalytic NO removal and oxygen evolution under visible light exposure. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Yang W, Yu H, Wang B, Wang X, Zhang H, Lei D, Lou LL, Yu K, Liu S. Leveraging Pt/Ce 1-xLa xO 2-δ To Elucidate Interfacial Oxygen Vacancy Active Sites for Aerobic Oxidation of 5-Hydroxymethylfurfural. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37667-37680. [PMID: 35968674 DOI: 10.1021/acsami.2c07065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interfacial oxygen-defective sites of oxide-supported metal catalysts are generally regarded as active centers in diverse redox reactions. Identification of their structure-property relationship at the atomic scale is of great importance but challenging. Herein, a series of La3+-doped three-dimensionally ordered macroporous CeO2 (3D-Ce1-xLaxO2-δ) were synthesized and applied as supports for Pt nanoparticles. The pieces of evidence from a suite of in-situ/ex-situ characterizations and theoretical calculations revealed that the La3+-mono-substituted La-□(-Ce)2 sites (where □ represents an oxygen vacancy) exhibited superior charge transfer ability, behaving as trapping centers for Pt nanoparticles. The resulting interfacial Ptδ+/La-□(-Ce)2 sites served as the reversible active species in the aerobic oxidation of 5-hydroxymethylfurfural to boost catalytic performance by simultaneously promoting oxygen activated capacity and the cleavage of O-H/C-H bonds of adsorbed hydroxymethyl groups. Consequently, the Pt/3D-Ce0.9La0.1O2-δ catalyst possessing the highest number of Ptδ+/La-□(-Ce)2 sites showed the best catalytic performance with 99.6% yield to 2,5-furandicarboxylic acid in 10 h. These results offer more insights into the promoting mechanism of interfacial oxygen-defective sites for the liquid-phase aerobic oxidation of aldehydes and alcohols.
Collapse
Affiliation(s)
- Weiping Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Haochen Yu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Beibei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuemin Wang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Hao Zhang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Da Lei
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lan-Lan Lou
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Kai Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuangxi Liu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
15
|
|
16
|
Shen Y, Chen L, Zhang L, Han W, Jiang M, Zheng H. Nitrogen fixation from air at normal temperature and pressure via Cobalt-iron photocatalyst day and night. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Ma X, Wang X, Xu L, Chen F. Oxygen Vacancy Clusters Enriched TiO2 with Low Pt Content for Superior Photocatalytic Activity. Catal Letters 2021. [DOI: 10.1007/s10562-021-03855-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|