1
|
Yin X, Gao D, Xu J, Zhao B, Wang X, Yu J, Yu H. Platinum-induced nanolization and electron-deficient gold in platinum@gold cocatalyst for efficient photocatalytic hydrogen peroxide production. J Colloid Interface Sci 2025; 678:1249-1258. [PMID: 39353362 DOI: 10.1016/j.jcis.2024.09.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Simultaneous optimization of the number and intensity of oxygen (O2) adsorption on gold (Au) cocatalyst is highly required to greatly improve their interfacial hydrogen peroxide (H2O2)-production activity. However, it is a great challenge to realize the above effective modulation of Au by traditional photodeposition route. In this study, a platinum (Pt)-induced selective photodeposition method was designed to simultaneously regulate the particle size and electronic structure of Au cocatalyst for boosting the photocatalytic H2O2-production activity of bismuth vanadate (BiVO4) via the selective deposition of Pt@Au core-shell cocatalyst. The photocatalytic results indicate that the as-prepared BiVO4/Pt0.1@Au photocatalyst achieves a considerable H2O2-production activity with a rate of 2752.13 μmol L-1 (AQE = 13.76 %), which is obviously higher than that of BiVO4/Pt (137.63 μmol L-1) and BiVO4/Au (475.33 μmol L-1). It was found that the introduction of Pt successfully induced the formation of Au nanoparticles for enhancing the number of O2 adsorption. Meanwhile, the spontaneous transfer of free electrons of Au to Pt induces the generation of electron-deficient Auδ+ sites, which spontaneously enhances the O2-adsorption intensity for facilitating the 2-electron oxygen reduction reaction (ORR), resulting in efficient H2O2 production. The present strategy may be useful for more comprehensively regulating the intensity and number of O2 adsorption on cocatalysts to facilitate artificial photosynthesis.
Collapse
Affiliation(s)
- Xinyu Yin
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China
| | - Duoduo Gao
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China
| | - Jiachao Xu
- School of Materials Science and Engineering, and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Binbin Zhao
- School of Materials Science and Engineering, and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xuefei Wang
- School of Materials Science and Engineering, and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China
| | - Huogen Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China.
| |
Collapse
|
2
|
Xu J, Zhang X, Wang X, Wu X, Yu H. Charge self-regulation over in-plane two-dimensional/two-dimensional hetero-cocatalyst for robust photocatalytic hydrogen generation. J Colloid Interface Sci 2024; 675:592-601. [PMID: 38986332 DOI: 10.1016/j.jcis.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The rationally designing and constructing atomic-level heterointerface of two-dimensional (2D) chalcogenides is highly desirable to overcome the sluggish H2O-activation process toward efficient solar-driven hydrogen evolution. Herein, a novel in-plane 2D/2D molybdenum disulfide-rhenium disulfide (ReS2-MoS2) heterostructure is well-designed to induce the charge self-regulation of active site by forming electron-enriched Re(4-δ)+ and electron-deficient S(2-δ)- sites, thus collectively facilitating the activation of adsorbed H2O molecules and its subsequent H2 evolution. Furthermore, the obtained in-plane heterogenous ReS2-MoS2 nanosheet can powerfully transfer photoexcited electrons to inhibit photocarrier recombination as observed by advanced Kelvin probe measurement (KPFM), in-situ X-ray photoelectron spectroscopy (XPS) and femtosecond transient absorption spectroscopy (fs-TAS). As expected, the obtained ReS2-MoS2/TiO2 photocatalyst achieves an outperformed H2-generation rate of 6878.3 μmol h-1 g-1 with visualizing H2 bubbles in alkaline/neutral conditions. This work about in-plane 2D/2D heterostructure with strong free-electron interaction provides a promising strategy for designing novel and efficient catalysts for various applications.
Collapse
Affiliation(s)
- Jiachao Xu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xidong Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, PR China
| | - Xuefei Wang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Xinhe Wu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, PR China.
| |
Collapse
|
3
|
Ma D, Wang W, Wang Q, Dai Y, Zhu K, Xu H, Yuan C, Dong P, Xi X. A novel visible-light-driven Z-scheme C 3N 5/BiVO 4 heterostructure with enhanced photocatalytic degradation performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19687-19698. [PMID: 38366321 DOI: 10.1007/s11356-024-32086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
As a visible-light response semiconductor materials, bismuth vanadate (BiVO4) is extensively applied in photodegradation organic dye field. In this study, we synthesized C3N5 nanosheets and coupled with decahedral BiVO4 to construct a Z-scheme C3N5/BiVO4 heterostructure with close interface contact. By introducing C3N5 into BiVO4, the built Z-scheme transfer pathway provides silky channel for charge carrier migration between different moieties and enables photoexcited electrons and holes accumulated on the surface of BiVO4 and C3N5. The accelerated separation of charge carriers ensures C3N5/BiVO4 heterostructures with a powerful oxidation capacity compared with pure BiVO4. Due to the synergistic effect in Z-scheme heterostructure, the C3N5/BiVO4 demonstrated an improved photodegradation ability of rhodamine B (RhB) and methylene blue (MB) that of bare BiVO4.
Collapse
Affiliation(s)
- Dongqi Ma
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Wuyou Wang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
| | - Qinzheng Wang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Yelan Dai
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Kai Zhu
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Haocheng Xu
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Cheng Yuan
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Pengyu Dong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| | - Xinguo Xi
- Key Laboratory for Ecological-Environment Materials of Jiangsu Province, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China
| |
Collapse
|
4
|
Qi S, Guan L, Zhang R, Wu S, Zhang K. Efficient Degradation of Rhodamine B with the BiOCl/Bi 2Fe 4O 9 Heterojunction Photocatalyst. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17146-17153. [PMID: 37976427 DOI: 10.1021/acs.langmuir.3c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
BiOCl/Bi2Fe4O9 photocatalyst was prepared by a coprecipitation-hydrothermal method. The heterojunction structure generated by the composite of BiOCl and Bi2Fe4O9 reduced the electron-hole recombination efficiency and improved the degradation rate of RhB. At 240 min, 20% BiOCl/Bi2Fe4O9 represented the excellent degradation effect on 10 mg/L RhB; the degradation efficiency reached 99.56%; and the reaction rate constant was 0.01534 min-1, which was 5.76 times and 6.06 times that of Bi2Fe4O9 and BiOCl, respectively. The main active substance of the photocatalytic degradation of dyes was superoxide radical O2-·. Five cycles of the experiment proved the relative stability of BiOCl/Bi2Fe4O9.
Collapse
Affiliation(s)
- Shuyan Qi
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150000, P. R. China
| | - Ling Guan
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150000, P. R. China
| | - Ruiyan Zhang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150000, P. R. China
| | - Shanqiang Wu
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150000, P. R. China
| | - Kaiyao Zhang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150000, P. R. China
| |
Collapse
|
5
|
Gao M, Li Z, Su X, Zhang X, Chang J, Geng D, Lu Y, Zhang H, Wei T, Feng J. 2D/2D MgO/g-C 3N 4 S-scheme heterogeneous tight with Mg-N bonds for efficient photo-Fenton degradation: Enhancing both oxygen vacancy and charge migration. CHEMOSPHERE 2023; 343:140285. [PMID: 37758077 DOI: 10.1016/j.chemosphere.2023.140285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Construction of S-scheme heterojunction is an efficient strategy to enhance photocatalytic efficiency. Besides the retained redox ability, the wide work function gap and intimate interface contact are essential for efficient degradation. Nontoxic magnesium oxide (MgO) with two dimensional (2D) structures and high work function is a potential material for S-scheme photocatalysts. Herein, MgO was used to in-situ grown on graphitic carbon nitride (g-C3N4) for constructing the strongly connected MgO/g-C3N4 S-scheme photocatalyst with tight Mg-N bonds. Meanwhile, the presence of Mg-N bonds induces the formation of oxygen vacancy in MgO, which enhances the Fenton-like degradation. Furthermore, the Mg-N bond promotes the charge migration between MgO and g-C3N4. Consisting of the enhanced Fenton-like process and photocatalysis, the MgO/g-C3N4 shows a higher photo-Fenton degradation activity (80.01%) for degradation of organic pollutants (Rhodamine B, 100 mg L-1) in water, than g-C3N4 (28.46%) and MgO (55.64%). Therefore, the interfacial chemical bonds in heterojunction photocatalysts provide an efficient strategy for further enhancing the photocatalysis of S-scheme photocatalysts.
Collapse
Affiliation(s)
- Mingming Gao
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, PR China.
| | - Zhiyong Li
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, PR China
| | - Xiaojiang Su
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, PR China
| | - Xinyi Zhang
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, PR China
| | - Jin Chang
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, PR China
| | - Di Geng
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, PR China
| | - Yinpeng Lu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, PR China
| | - Hexin Zhang
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, PR China
| | - Tong Wei
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, PR China; State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China.
| | - Jing Feng
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin, 150001, PR China.
| |
Collapse
|
6
|
Razafintsalama AR, Mishra RP, Sahoo MK, Mrinalini M, Sahoo B, Ravelonandro P, Chaudhary YS. Efficient Photocatalytic Reduction of Hexavalent Chromium by BiVO 4-Decorated MXene Photocatalysts and Their Charge Carrier Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12725-12739. [PMID: 37655778 DOI: 10.1021/acs.langmuir.3c01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The synergistically MXene (Ti3C2Tx) co-catalyst-decorated BiVO4-based heterostructured photocatalysts have been synthesized by a hydrothermal approach with varied loading concentrations of MXene (Ti3C2Tx) to drive the hexavalent chromium reduction efficiently. The formation of the heterostructured photocatalyst was confirmed by the appearance of X-ray diffraction (XRD) peaks corresponding to the monoclinic BiVO4 phase and MXene (Ti3C2Tx) and also the antisymmetric (834 cm-1) and symmetric stretching (715 cm-1) of tetrahedral VO4 and D (1330 cm-1) and G (1570 cm-1) bands corresponding to MXene (Ti3C2Tx) in the Raman spectrum. The worm-like structures of BiVO4 nanocrystals grew onto the lamellar sheets of MXene (Ti3C2Tx), as shown by field emission scanning electron microscopy (FESEM), and has an increased surface area of 15.62 m2g-1 in the case of BVO-20-TC. X-ray photoelectron spectroscopy (XPS) analysis confirms the presence of V5+ and Ti3+states, and the uniform distribution of BiVO4 nanocrystals over lamellar sheets of MXene (Ti3C2Tx) is evident from energy-dispersive X-ray (EDX) analysis. The ultraviolet-diffuse reflectance spectroscopy (UV-DRS) spectra suggest a decrease in the band gap energy of BVO-20-TC to 2.335 eV, promoting a higher degree of visible light harvesting. Upon optimization, by varying the pH, the amount of the photocatalyst, and the concentration of Cr(IV), BVO-20-TC exhibits the highest photocatalytic efficiency (96.39%) while using a Cr(VI) concentration of 10 ppm at pH 2 and 15 mg of the photocatalyst, and the photoreduction of Cr(VI) to Cr(III) follows the pseudo-first-order reaction. The decrease in the PL intensity in BVO-20-TC reveals a faster transfer of electrons from MXene (Ti3C2Tx) to BiVO4. Further, the higher degree of band bending at the BiVO4/MXene (Ti3C2Tx) heterojunction, revealed from the Mott-Schottky analysis, facilitates efficient charge transfer and eventually faster and efficient photoreduction of Cr(VI) to Cr(III). The reusability and stability test undertaken for BVO-20-TC reveals that even after five cycles, the Cr (VI) photoreduction efficacy is retained. This work provides insights into photoreduction of Cr (VI) by using such heterostructures.
Collapse
Affiliation(s)
- A Rija Razafintsalama
- Materials Chemistry Department, CSIR-Institute of Minerals Technology, Bhubaneswar, Odisha 751013, India
- Procédés et Ecologie Industrielle, Unité de Recherche en Génie des Procédés et Génie de l'Environnement, University of Antananarivo, Antananarivo 101, Madagascar
| | - Rajashree P Mishra
- Materials Chemistry Department, CSIR-Institute of Minerals Technology, Bhubaneswar, Odisha 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manas K Sahoo
- Materials Chemistry Department, CSIR-Institute of Minerals Technology, Bhubaneswar, Odisha 751013, India
| | - Madoori Mrinalini
- Materials Chemistry Department, CSIR-Institute of Minerals Technology, Bhubaneswar, Odisha 751013, India
| | - Bismaya Sahoo
- Materials Chemistry Department, CSIR-Institute of Minerals Technology, Bhubaneswar, Odisha 751013, India
| | - Pierre Ravelonandro
- Procédés et Ecologie Industrielle, Unité de Recherche en Génie des Procédés et Génie de l'Environnement, University of Antananarivo, Antananarivo 101, Madagascar
| | - Yatendra S Chaudhary
- Materials Chemistry Department, CSIR-Institute of Minerals Technology, Bhubaneswar, Odisha 751013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Song R, Kang S, Yao L, Zheng L, Yu D, Zhang D. Construction of an La-BiVO 4/O-Doped g-C 3N 4 Heterojunction Photocatalyst Embedded in Electrospinning Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6647-6656. [PMID: 37133555 DOI: 10.1021/acs.langmuir.2c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BiVO4 has been widely used in the field of photocatalysis due to its nontoxic and moderate band gap. However, single BiVO4 has the disadvantages of a high recombination rate of photogenerated carriers and weak response to visible light, inhibiting its photocatalytic applications. To explore viable solutions, a hybrid material composed of lanthanum-doped bismuth vanadate (La-BiVO4) and oxygen-doped porous graphite carbon nitride (O-doped g-C3N4), i.e., La-BiVO4/O-doped g-C3N4 powder, was prepared by a facile hydrothermal reaction and low-temperature calcination. Then, the powder was loaded on polyacrylonitrile nanofibers (NFs) through the electrospinning fiber technique. Various surface science characterizations, including transmission electron microscopy and nitrogen absorption and desorption analysis, confirmed the successful synthesis of a mesoporous heterojunction material. The La3+-doping as well as the porous morphologies and larger specific surface area of the O-doped g-C3N4 ultimately improve the photocatalytic abilities via a proposed Z-scheme heterojunction mechanism. The roles of La3+-doping and morphology modification in promoting the separation of the photogenerated carriers and broadening the optical absorption range were experimentally discussed. The RhB degradation experiment indicated that the La-BiVO4/O-doped g-C3N4 powder has excellent photocatalytic activity, which is about 2.85 and 2 times higher than that of the pure BiVO4 and O-doped g-C3N4, respectively. Meanwhile, the La-BiVO4/O-doped g-C3N4 NF shows good stability and recoverability after a 10-cycle testing. Such a hybrid photocatalyst with a proposed Z-scheme heterojunction mechanism and good plasticity might pave a feasible way to fabricate a new library of photocatalysts.
Collapse
Affiliation(s)
- Ruixin Song
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Shifei Kang
- Institute of Photochemistry and Photocatalyst, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Liangtao Yao
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Dechao Yu
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
8
|
Cheng C, Shi Q, Zhu W, Zhang Y, Su W, Lu Z, Yan J, Chen K, Wang Q, Li J. Microwave-Assisted Synthesis of MoS 2/BiVO 4 Heterojunction for Photocatalytic Degradation of Tetracycline Hydrochloride. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091522. [PMID: 37177067 PMCID: PMC10180445 DOI: 10.3390/nano13091522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Compared with traditional hydrothermal synthesis, microwave-assisted synthesis has the advantages of being faster and more energy efficient. In this work, the MoS2/BiVO4 heterojunction photocatalyst was synthesized by the microwave-assisted hydrothermal method within 30 min. The morphology, structure and chemical composition were characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and high-resolution transmission electron microscopy (HRTEM). The results of characterizations demonstrated that the synthesized MoS2/BiVO4 heterojunction was a spherical structure with dimensions in the nanorange. In addition, the photocatalytic activity of the samples was investigated by degrading tetracycline hydrochloride (TC) under visible light irradiation. Results indicated that the MoS2/BiVO4 heterojunction significantly improved the photocatalytic performance compared with BiVO4 and MoS2, in which the degradation rate of TC (5 mg L-1) by compound where the mass ratio of MoS2/BiVO4 was 5 wt% (MB5) was 93.7% in 90 min, which was 2.36 times of BiVO4. The active species capture experiments indicated that •OH, •O2- and h+ active species play a major role in the degradation of TC. The degradation mechanism and pathway of the photocatalysts were proposed through the analysis of the band structure and element valence state. Therefore, microwave technology provided a quick and efficient way to prepare MoS2/BiVO4 heterojunction photocatalytic efficiently.
Collapse
Affiliation(s)
- Cixin Cheng
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Qin Shi
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
- Guangxi Research Institute of Chemical Industry Co., Ltd., Nanning 530006, China
| | - Weiwei Zhu
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Yuheng Zhang
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Wanyi Su
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Zizheng Lu
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Kao Chen
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Qi Wang
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650093, China
| | - Junshan Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
9
|
Gao M, Li W, Su X, Li Z, Ding X, Du X, Ren Y, Zhang H, Feng J, Wei T. A Regenerable Cu2O/BiOBr S-scheme Heterojunction Photocatalysts for Efficient Photocatalytic Degradation of Mixed Organic Pollutants. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
10
|
Towards the Sustainable Production of Ultra-Low-Sulfur Fuels through Photocatalytic Oxidation. Catalysts 2022. [DOI: 10.3390/catal12091036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nowadays, the sulfur-containing compounds are removed from motor fuels through the traditional hydrodesulfurization technology, which takes place under harsh reaction conditions (temperature of 350–450 °C and pressure of 30–60 atm) in the presence of catalysts based on alumina with impregnated cobalt and molybdenum. According to the principles of green chemistry, energy requirements should be recognized for their environmental and economic impacts and should be minimized, i.e., the chemical processes should be carried out at ambient temperature and atmospheric pressure. This approach could be implemented using photocatalysts that are sensitive to visible light. The creation of highly active photocatalytic systems for the deep purification of fuels from sulfur compounds becomes an important task of modern catalysis science. The present critical review reports recent progress over the last 5 years in heterogeneous photocatalytic desulfurization under visible light irradiation. Specific attention is paid to the methods for boosting the photocatalytic activity of materials, with a focus on the creation of heterojunctions as the most promising approach. This review also discusses the influence of operating parameters (nature of oxidant, molar ratio of oxidant/sulfur-containing compounds, photocatalyst loading, etc.) on the reaction efficiency. Some perspectives and future research directions on photocatalytic desulfurization are also provided.
Collapse
|
11
|
Zhu K, Wang W, Zhang B, Chen X, Ma D, Wang X, Zhang R, Liu Y, Dong P, Xi X. Interface Engineering of a 2D/2D BiVO 4/Bi 4V 2O 10 Heterostructure with Improved Photocatalytic Photoredox Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7558-7566. [PMID: 35666859 DOI: 10.1021/acs.langmuir.2c00609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bismuth vanadate (BiVO4) is a promising photocatalyst for water pollution degradation and photocatalytic oxygen evolution. In this work, we prepared 2D/2D BiVO4-Bi4V2O10 heterostructure with tight interfacial contact via a facile one-step hydrothermal process. The crystal structure and morphology of the samples could be easily regulated by changing the pH values of the solution. The BiVO4-Bi4V2O10 heterostructure exhibited an enhanced photodegradation rate of Cr(VI) and oxygen evolution that of bare BiVO4, indicating that the synergistic effect and the interfacial fusions between BiVO4 and Bi4V2O10 can effectively promote the migration and separation rate of photoexcited charge carriers.
Collapse
Affiliation(s)
- Kai Zhu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Wuyou Wang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Beibei Zhang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Xiaowei Chen
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Dongqi Ma
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Xuewen Wang
- . Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the College of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
| | - Rongbin Zhang
- . Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the College of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yin Liu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, People's Republic of China
| | - Pengyu Dong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Xinguo Xi
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| |
Collapse
|
12
|
Xiong J, Zeng HY, Peng JF, Xu S, Yang ZL. Insight into the enhanced photocatalytic activity mechanism of the Ag 3VO 4/CoWO 4 p–n heterostructure under visible light. CrystEngComm 2022. [DOI: 10.1039/d2ce00524g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Ag3VO4/CoWO4 p–n heterostructure was designed and prepared by an in situ growth method. The physicochemical properties were characterized by multiple techniques, and the photocatalytic performances in Cr(vi) reduction and TC degradation were also evaluated under visible-light irradiation.
Collapse
Affiliation(s)
- Jie Xiong
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Hong-Yan Zeng
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Jin-Feng Peng
- School of Mechanical Engineering, College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Sheng Xu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Zhuo-Lin Yang
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| |
Collapse
|
13
|
Meng A, Zhou S, Wen D, Han P, Su Y. g-C3N4/CoTiO3 S-scheme heterojunction for enhanced visible light hydrogen production through photocatalytic pure water splitting. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Zhang J, Yang G, He B, Cheng B, Li Y, Liang G, Wang L. Electron transfer kinetics in CdS/Pt heterojunction photocatalyst during water splitting. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|