1
|
Xu Y, Hu X, Chen Y, Lin S, Wang C, Gou F, Yang X, Zheng W, Ma D. 3-Hydroxythiophenol-Formaldehyde Resin Microspheres Modulated by Sulfhydryl Groups for Highly Efficient Photocatalytic Synthesis of H 2O 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304948. [PMID: 38072664 PMCID: PMC11462293 DOI: 10.1002/advs.202304948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/31/2023] [Indexed: 10/10/2024]
Abstract
Resorcinol-formaldehyde (RF) resin represents a promising visible-light responding photocatalyst for oxygen reduction reaction (ORR) toward H2O2 production. However, its photocatalytic ORR activity toward H2O2 generation is still unsatisfied for practical application. Herein, 3-hydroxythiophenol-formaldehyde (3-HTPF) resin microspheres synthesized through polycondensation reaction between 3-HTP and formaldehyde at room temperature and subsequent hydrothermal treatment exhibit enhanced photocatalytic ORR activity is reported. The experimental results show that the partial substitution of hydroxy group (─OH) by sulfhydryl one (─SH) through using 3-HTP to replace resorcinol could slow the rates of nucleation and growth of the resin particles and lead to strongly π-stacked architecture in 3-HTPF. The introduction of ─SH group can also improve adsorption ability of 3-HTPF to O2 molecules and enhance ORR catalytic activity of the photocatalysts. Stronger built-in electric field, better adsorption ability to O2 molecules, and increased surface catalytic activity collectively boost photocatalytic activity of 3-HTPF microspheres. As a result, H2O2 production rate of 2010 µm h-1 is achieved over 3-HTPF microspheres at 273 K, which is 3.4 times larger than that obtained using RF submicrospheres (591 µm h-1). The rational substituent group modulation provides a new strategy for designing polymeric photocatalysts at the molecular level toward high-efficiency artificial photosynthesis.
Collapse
Affiliation(s)
- Yulu Xu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing UniversityShaoxing312000China
| | - Xia Hu
- School of Life ScienceShaoxing UniversityShaoxing312000China
| | - Yuyuan Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing UniversityShaoxing312000China
| | - Sijie Lin
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing UniversityShaoxing312000China
| | - Chen Wang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing UniversityShaoxing312000China
| | - Faliang Gou
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing UniversityShaoxing312000China
| | - Xiaogang Yang
- Institute of Materials Science and DevicesSuzhou University of Science and TechnologySuzhou215011China
| | - Weiwei Zheng
- Department of ChemistrySyracuse UniversitySyracuseNY13244USA
| | - De‐Kun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals ProcessShaoxing UniversityShaoxing312000China
| |
Collapse
|
2
|
An H, Liu X, Cai W, Shao X. Explainable Graph Neural Networks with Data Augmentation for Predicting p Ka of C-H Acids. J Chem Inf Model 2024; 64:2383-2392. [PMID: 37706462 DOI: 10.1021/acs.jcim.3c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The pKa of C-H acids is an important parameter in the fields of organic synthesis, drug discovery, and materials science. However, the prediction of pKa is still a great challenge due to the limit of experimental data and the lack of chemical insight. Here, a new model for predicting the pKa values of C-H acids is proposed on the basis of graph neural networks (GNNs) and data augmentation. A message passing unit (MPU) was used to extract the topological and target-related information from the molecular graph data, and a readout layer was utilized to retrieve the information on the ionization site C atom. The retrieved information then was adopted to predict pKa by a fully connected network. Furthermore, to increase the diversity of the training data, a knowledge-infused data augmentation technique was established by replacing the H atoms in a molecule with substituents exhibiting different electronic effects. The MPU was pretrained with the augmented data. The efficacy of data augmentation was confirmed by visualizing the distribution of compounds with different substituents and by classifying compounds. The explainability of the model was studied by examining the change of pKa values when a specific atom was masked. This explainability was used to identify the key substituents for pKa. The model was evaluated on two data sets from the iBonD database. Dataset1 includes the experimental pKa values of C-H acids measured in DMSO, while dataset2 comprises the pKa values measured in water. The results show that the knowledge-infused data augmentation technique greatly improves the predictive accuracy of the model, especially when the number of samples is small.
Collapse
Affiliation(s)
- Hongle An
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xuyang Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Ba G, Hu H, Chen X, Hu S, Ye J, Wang D. Organic Molecule Bifunctionalized Polymeric Carbon Nitride for Enhanced Photocatalytic Hydrogen Peroxide Production. CHEMSUSCHEM 2023; 16:e202300860. [PMID: 37602501 DOI: 10.1002/cssc.202300860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Modifying the polymeric carbon nitride (CN) with organic molecules is a promising strategy to enhance the photocatalytic activity. However, most previously reported works show that interchain embedding and edge grafting of the organic molecule can hardly be achieved simultaneously. Herein, we successfully synthesized organic molecule bifunctionalized CN (MBCN) through copolymerization of melon and sulfanilamide at a purposely elevated temperature of 550 °C. In MBCN, the edge grafted and interchain embedded benzene rings act as the electron-donating group and charge-transfer channel, respectively, rendering efficient photocatalytic H2 O2 production. The optimal MBCN exhibits a significantly improved non-sacrificial photocatalytic H2 O2 generation rate (54.0 μmol g-1 h-1 ) from pure water, which is 10.4 times that of pristine CN. Experimental and density functional theory (DFT) calculation results reveal that the enhanced H2 O2 production activity of MBCN is mainly attributed to the improved photogenerated charge separation/transfer and decreased formation energy barrier (▵G) from O2- to the intermediate 1,4-endoperoxide (⋅OOH). This work suggests that simultaneous formation of electron donating group and charge transfer channel via organic molecule bifunctionalization is a feasible strategy for boosting the photocatalytic activity of CN.
Collapse
Affiliation(s)
- Guiming Ba
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Huilin Hu
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xin Chen
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shan Hu
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan
| | - Defa Wang
- TJU-NIMS International Collaboration Laboratory, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Liu X, Pan X, Qiu Y, Li J, Ma X, Li D. Vacancy-Modified Porous g-C 3N 4 Nanosheets Controlled by Physical Activation for Highly Efficient Visible-Light-Driven Hydrogen Evolution and Organics Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11294-11303. [PMID: 37534406 DOI: 10.1021/acs.langmuir.3c00993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
As a promising photocatalyst material, g-C3N4 has great application potential in energy production and environmental improvement. In this work, surface-modified g-C3N4 nanosheets with excellent stability and high photocatalytic activity were successfully synthesized by physical steam activation. The charge transfer rate of carbon nitride was improved due to the synergistic effect of nitrogen defect and oxygen doping caused by steam activation. Meanwhile, the specific surface area and pore volume of the optimized sample reached 124.3 m2 g-1 and 0.42 cm3 g-1, respectively, which increased the exposed reaction sites of reactants, enhancing the photocatalytic activity of g-C3N4. In addition, this novel g-C3N4 displayed a great H2 evolution rate of 5889.39 μmol h-1 g-1 with a methylene blue degradation rate up to 6.52 × 10-3 min-1, which was 3.7 and 2.1 times of original g-C3N4, respectively. This study provided a simple and economical method to develop a highly efficient g-C3N4 photocatalyst for solar energy conversion.
Collapse
Affiliation(s)
- Xutong Liu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaosen Pan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
5
|
Liu T, Zhu W, Wang N, Zhang K, Wen X, Xing Y, Li Y. Preparation of Structure Vacancy Defect Modified Diatomic-Layered g-C 3 N 4 Nanosheet with Enhanced Photocatalytic Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302503. [PMID: 37344350 PMCID: PMC10460902 DOI: 10.1002/advs.202302503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Structure self-modification of graphitic carbon nitride (g-C3 N4 ) without the assistance of other species has attracted considerable attention. In this study, the structure vacancy defect modified diatomic-layered g-C3 N4 nanosheet (VCN) is synthesized by thermal treatment of bulk g-C3 N4 in a quartz tube with vacuum atmosphere that will generate a pressure-thermal dual driving force to boost the exfoliation and formation of structure vacancy for g-C3 N4 . The as-prepared VCN possesses a large specific surface area with a rich pore structure to provide more active centers for catalytic reactions. Furthermore, the as-formed special defect level in VCN sample can generate a higher exciton density at photoexcitation stage. Meanwhile, the photogenerated charges will rapidly transfer to VCN surface due to the greatly shortened transfer path resulting from the ultrathin structure (≈1.5 nm), which corresponds to two graphite carbon nitride atomic layers. In addition, the defect level alleviates the drawback of enlarged bandgap caused by the quantum size effect of nano-scaled g-C3 N4 , resulting in a well visible-light utilization. As a result, the VCN sample exhibits an excellent photocatalytic performance both in hydrogen production and photodegradation of typical antibiotics.
Collapse
Affiliation(s)
- Tian Liu
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| | - Wei Zhu
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| | - Ning Wang
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| | - Keyu Zhang
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| | - Xue Wen
- School of ChemistryXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yan Xing
- Jilin Provincial Key Laboratory of Advanced Energy MaterialsDepartment of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Yunfeng Li
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| |
Collapse
|
6
|
Peng L, Liu J, Li Z, Jing Y, Zou Y, Chu H, Xu F, Sun L, Huang P. One-step thermal polymerization synthesis of nitrogen-rich g-C 3N 4 nanosheets enhances photocatalytic redox activity. RSC Adv 2022; 12:33598-33604. [PMID: 36505684 PMCID: PMC9682490 DOI: 10.1039/d2ra05867g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Graphitic carbon nitride (g-C3N4) has attracted enormous attention as a visible-light-responsive carbon-based semiconductor photocatalyst. However, fast charge recombination seriously limits its application. Therefore, it is urgent to modify the electronic structure of g-C3N4 to obtain excellent photocatalytic activity. Herein, we reported a one-step thermal polymerization synthesis of nitrogen-rich g-C3N4 nanosheets. Benefiting from the N self-doping and the ultrathin structure, the optimal CN-70 exhibits its excellent performance. A 6.7 times increased degradation rate of rhodamine B (K = 0.06274 min-1), furthermore, the hydrogen evolution efficiency also reached 2326.24 μmol h-1 g-1 (λ > 420 nm). Based on a series of characterizations and DFT calculations, we demonstrated that the N self-doping g-C3N4 can significantly introduce midgap states between the valence band and conduction band, which is more conducive to the efficient separation of photogenerated carriers. Our work provides a facile and efficient method for self-atom doping into g-C3N4, providing a new pathway for efficient photocatalysts.
Collapse
Affiliation(s)
- Leyu Peng
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| | - Jiaxi Liu
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China,School of Mechanical & Electrical Engineering, Guilin University of Electronic TechnologyGuilin 541004China
| | - Ziyuan Li
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| | - Yifan Jing
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| | - Yongjin Zou
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| | - Hailiang Chu
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| | - Fen Xu
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| | - Lixian Sun
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China,School of Mechanical & Electrical Engineering, Guilin University of Electronic TechnologyGuilin 541004China
| | - Pengru Huang
- School of Material Science and Engineering, Guilin University of Electronic Technology, Guangxi Key Laboratory of Information Materials, Guangxi Collaborative Innovation Center of Structure and Property for New Energy and MaterialsGuilin 541004China
| |
Collapse
|
7
|
Cai M, Wang C, Liu Y, Yan R, Li S. Boosted photocatalytic antibiotic degradation performance of Cd0.5Zn0.5S/carbon dots/Bi2WO6 S-scheme heterojunction with carbon dots as the electron bridge. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Yang C, Hou Y, Luo G, Yu J, Cao S. Alkyl group-decorated g-C 3N 4 for enhanced gas-phase CO 2 photoreduction. NANOSCALE 2022; 14:11972-11978. [PMID: 35929773 DOI: 10.1039/d2nr02551e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With excellent physical/chemical stability and feasible synthesis, g-C3N4 has attracted much attention in the field of photocatalysis. However, its weak photoactivity limits its practical applications. Herein, by easily planting hydrophobic alkyl groups onto g-C3N4, the hydrophilicity of g-C3N4 can be well regulated and its specific surface area be enlarged simultaneously. Such a modification ensures enhanced CO2 capture and increased active sites. In addition, the introduction of alkyl groups endows g-C3N4 with abundant charge density and efficient separation of photoinduced excitons. All these advantages synergistically contribute to the enhanced photocatalytic CO2 reduction performance over the optimized catalyst (DCN90), and the total CO2 conversion is 7.4-fold that of pristine g-C3N4 (CN).
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Yanting Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Guoqiang Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Shaowen Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
9
|
Chen Z, Li Y, Tian F, Chen X, Wu Z. Synthesis of BiVO4/g-C3N4 S-scheme heterojunction via a rapid and green microwave route for efficient removal of glyphosate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Constructing 0D/1D Ag3PO4/TiO2 S-scheme heterojunction for efficient photodegradation and oxygen evolution. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64099-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Zhang Y, Zhang L, Zeng D, Wang W, Wang J, Wang W, Wang W. An efficient strategy for photocatalytic hydrogen peroxide production over oxygen-enriched graphitic carbon nitride with sodium phosphate. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|