1
|
Ma J, Xiao Y, Chen J, Shen Y, Xiao S, Cao S. Dual-pathway charge transfer mechanism of anatase/rutile TiO 2-Ag 3PO 4 hollow photocatalyst promotes efficient degradation of pesticides. J Colloid Interface Sci 2025; 678:334-344. [PMID: 39208761 DOI: 10.1016/j.jcis.2024.08.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exploring high-performance photocatalysts still remains a big challenge due to poor charge separation efficiency. Herein, we prepare a novel anatase/rutile TiO2-Ag3PO4 hollow photocatalyst (A/R-TiO2-Ag3PO4) for addressing this challenge. Microstructural characterization and photoelectric measurements confirm that the synergy of hollow structure and dual-heterojunction can provide abundant active sites and boost efficient charge separation through dual-pathway charge transfer mechanism. The A/R-TiO2-Ag3PO4 photocatalyst exhibits the highest photocurrent density (15.25 µA cm-2), which is 8.4 and 5.2 times than that of A-TiO2-Ag3PO4 (1.82 µA cm-2) and P25-Ag3PO4 (2.93 µA cm-2), respectively. Photo-degradation experiment shows that A/R-TiO2-Ag3PO4 presents a high degradation percentage (98.7 %) of thiamethoxam (THX) within 30 min, which is 1.45 and 1.23 times than that of A-TiO2-Ag3PO4 (68.1 %) and P25-Ag3PO4 (80.7 %), respectively. Furthermore, the degradation percentage of THX by A/R-TiO2-Ag3PO4 is as high as 96.4 % after seven successive cycles, indicating excellent cycling stability. Therefore, this work provides a new insight into exploring other high-performance photocatalysts by combining hollow structure and dual-heterojunction.
Collapse
Affiliation(s)
- Junjie Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yingguan Xiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; School of Safety Management, GuangXi Vocational College of Safety Engineering, Nanning 530100, China
| | - Juanrong Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yue Shen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sisi Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shunsheng Cao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Yin X, Gao D, Xu J, Zhao B, Wang X, Yu J, Yu H. Platinum-induced nanolization and electron-deficient gold in platinum@gold cocatalyst for efficient photocatalytic hydrogen peroxide production. J Colloid Interface Sci 2025; 678:1249-1258. [PMID: 39353362 DOI: 10.1016/j.jcis.2024.09.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Simultaneous optimization of the number and intensity of oxygen (O2) adsorption on gold (Au) cocatalyst is highly required to greatly improve their interfacial hydrogen peroxide (H2O2)-production activity. However, it is a great challenge to realize the above effective modulation of Au by traditional photodeposition route. In this study, a platinum (Pt)-induced selective photodeposition method was designed to simultaneously regulate the particle size and electronic structure of Au cocatalyst for boosting the photocatalytic H2O2-production activity of bismuth vanadate (BiVO4) via the selective deposition of Pt@Au core-shell cocatalyst. The photocatalytic results indicate that the as-prepared BiVO4/Pt0.1@Au photocatalyst achieves a considerable H2O2-production activity with a rate of 2752.13 μmol L-1 (AQE = 13.76 %), which is obviously higher than that of BiVO4/Pt (137.63 μmol L-1) and BiVO4/Au (475.33 μmol L-1). It was found that the introduction of Pt successfully induced the formation of Au nanoparticles for enhancing the number of O2 adsorption. Meanwhile, the spontaneous transfer of free electrons of Au to Pt induces the generation of electron-deficient Auδ+ sites, which spontaneously enhances the O2-adsorption intensity for facilitating the 2-electron oxygen reduction reaction (ORR), resulting in efficient H2O2 production. The present strategy may be useful for more comprehensively regulating the intensity and number of O2 adsorption on cocatalysts to facilitate artificial photosynthesis.
Collapse
Affiliation(s)
- Xinyu Yin
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China
| | - Duoduo Gao
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China
| | - Jiachao Xu
- School of Materials Science and Engineering, and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Binbin Zhao
- School of Materials Science and Engineering, and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xuefei Wang
- School of Materials Science and Engineering, and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China
| | - Huogen Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, PR China.
| |
Collapse
|
3
|
Liu R, Wang P, Wang X, Chen F, Yu H. Facilitating Oriented Electron Transfer from Cu to Mo 2C MXene for Weakened Mo─H Bond Toward Enhanced Photocatalytic H 2 Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408330. [PMID: 39604232 DOI: 10.1002/smll.202408330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/02/2024] [Indexed: 11/29/2024]
Abstract
Mo2C MXene (Mo2CTx) is recognized as an excellent cocatalyst due to unique physicochemical properties and platinum-like d-band of Mo active sites. However, Mo sites of Mo2CTx with high-density empty d-orbitals exhibit strong Mo─Hads bonds during photocatalytic hydrogen evolution, leading to easy adsorption of hydrogen ions from solution and unfavorable desorption of H2 from Mo sites. To weaken the Mo─Hads bond, a strategy of oriented electron transfer from Cu to Mo2CTx to increase the antibonding orbital occupancy of Mo─Hads hybrid orbitals is implemented by introducing Cu into Mo2CTx interlayers to form Cu-Mo2CTx. The Cu-Mo2CTx is synthesized from Mo2Ga2C and CuCl2 via a one-step molten salt method and combined with TiO2 to form Cu-Mo2CTx/TiO2 photocatalyst through an ultrasound-assisted approach. Hydrogen production tests reveal that an exceptional performance of Cu-Mo2CTx/TiO2 (6446 µmol h-1 g-1, AQE = 18.3%) is 8.4 fold higher than that of Mo2CF2/TiO2 (Mo2CF2 by the conventional etchant NH4F+HCl). Density functional theory (DFT) calculations and characterization results corroborate that the oriented electron transfer from Cu to Mo2CTx increases the Mo─Hads antibonding occupancy in Cu-Mo2CTx, thereby weakening Mo─Hads bonds and accelerating the hydrogen evolution rate of TiO2. This research offers valuable insights into optimizing H-adsorption capabilities at active sites on MXene materials.
Collapse
Affiliation(s)
- Ruiyun Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Ping Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Xuefei Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Feng Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Huogen Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| |
Collapse
|
4
|
Xu J, Zhang X, Wang X, Wu X, Yu H. Charge self-regulation over in-plane two-dimensional/two-dimensional hetero-cocatalyst for robust photocatalytic hydrogen generation. J Colloid Interface Sci 2024; 675:592-601. [PMID: 38986332 DOI: 10.1016/j.jcis.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The rationally designing and constructing atomic-level heterointerface of two-dimensional (2D) chalcogenides is highly desirable to overcome the sluggish H2O-activation process toward efficient solar-driven hydrogen evolution. Herein, a novel in-plane 2D/2D molybdenum disulfide-rhenium disulfide (ReS2-MoS2) heterostructure is well-designed to induce the charge self-regulation of active site by forming electron-enriched Re(4-δ)+ and electron-deficient S(2-δ)- sites, thus collectively facilitating the activation of adsorbed H2O molecules and its subsequent H2 evolution. Furthermore, the obtained in-plane heterogenous ReS2-MoS2 nanosheet can powerfully transfer photoexcited electrons to inhibit photocarrier recombination as observed by advanced Kelvin probe measurement (KPFM), in-situ X-ray photoelectron spectroscopy (XPS) and femtosecond transient absorption spectroscopy (fs-TAS). As expected, the obtained ReS2-MoS2/TiO2 photocatalyst achieves an outperformed H2-generation rate of 6878.3 μmol h-1 g-1 with visualizing H2 bubbles in alkaline/neutral conditions. This work about in-plane 2D/2D heterostructure with strong free-electron interaction provides a promising strategy for designing novel and efficient catalysts for various applications.
Collapse
Affiliation(s)
- Jiachao Xu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xidong Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, PR China
| | - Xuefei Wang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Xinhe Wu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, PR China.
| |
Collapse
|
5
|
Li J, Li Z, Song Y, Zhang X, Xie H, Sheng S, Zou H. 3D/1D Fe 3O 4@TiO 2/TC-TiO 2/SiO 2 Magnetic Inorganic-Framework Molecularly Imprinted Fibers for Targeted Photodegradation. Inorg Chem 2024; 63:10568-10584. [PMID: 38800842 DOI: 10.1021/acs.inorgchem.4c00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
To achieve a selective degradation of pollutants in a water body, 3D/1D magnetic molecularly imprinted fibers Fe3O4@TiO2/TC-TiO2/SiO2 were fabricated by an electrospinning method. The molecularly imprinted layer was successfully prepared by a direct imprinting method using TiO2 as a functional monomer. Fe3O4 facilitates the catalyst recovery and light utilization. The as-prepared fibrous photocatalyst has a large specific surface area of 132.4 m2/g. The successful generation of imprinted sites was proven by various characterizations. The weak interaction between the inorganic functional monomer and tetracycline (TC) was determined to be van der Waals force and hydrogen bonds by the IGMH isosurface theory. The construction of the 3D/1D homojunction of molecularly imprinted materials is beneficial to charge transfer. The as-prepared photocatalyst exhibits a high selectivity coefficient α = 737.38 competing with RhB. The TC removal efficiency reached 100% within only 20 min. In addition, the possible degradation pathway and the degradation mechanism are reasonably proposed. This work not only provides an in-depth mechanism of the weak interaction between the inorganic molecularly imprinted functional monomer and pollutant molecules but also offers new thoughts on the fabrication of photocatalysts for the effective and selective treatment of pollutants in water bodies.
Collapse
Affiliation(s)
- Jingyao Li
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Zhongliang Li
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Yanhua Song
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Xiaozhen Zhang
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., No. 712 Wen'er West Road, Hangzhou 310003, PR China
| | - Shihou Sheng
- China-Japan Union Hospital of Jilin University Department of Gastrointestinal Surgery, Changchun 130012, China
| | - Haifeng Zou
- Department of Chemical Engineering and Applied Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| |
Collapse
|
6
|
Wu X, Zhou J, Tan Q, Li K, Li Q, Correia Carabineiro SA, Lv K. Remarkable Enhancement of Photocatalytic Activity of High-Energy TiO 2 Nanocrystals for NO Oxidation through Surface Defluorination. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11479-11488. [PMID: 38386611 DOI: 10.1021/acsami.3c16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The superior photocatalytic activity of TiO2 nanocrystals with exposed high-energy (001) facets, achieved through the use of hydrofluoric acid as a shape-directing reagent, is widely reported. However, in this study, we report for the first time the detrimental effect of surface fluorination on the photoreactivity of high-energy faceted TiO2 nanocrystals towards NO oxidation (resulting in a NO removal rate of only 5.9%). This study aims to overcome this limitation by exploring surface defluorination as an effective strategy to enhance the photocatalytic oxidation of NO on TiO2 nanocrystals enclosed with (001) facets. We found that surface defluorination, achieved through either NaOH washing (resulting in an improved NO removal rate of 23.2%) or calcination (yielding an enhanced NO removal rate of 52%), leads to a large increase in the photocatalytic oxidation of NO on TiO2 nanocrystals with enclosed (001) facets. Defluorination processes stimulate charge separation, effectively retarding recombination and significantly promoting the production of reactive oxygen species, including superoxide radicals (·O2-), singlet oxygen (1O2), and hydroxyl radicals (·OH). Both in situ diffuse reflectance infrared Fourier-transform spectroscopy and density functional theory calculations confirm the higher adsorption of NO after defluorination, thus facilitating the oxidation of NO on TiO2 nanocrystals.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technische Universitat Darmstadt, Otto-Berndt-Strasse 3, Darmstadt 64287, Germany
| | - Jie Zhou
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, China
| | - Qiuyan Tan
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Kaining Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Qin Li
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| | - Sónia A Correia Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Kangle Lv
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environment, South-Central Minzu University, Wuhan, Hubei Province 430074, China
| |
Collapse
|
7
|
Wu X, Chen G, Kang J, Zheng Z, Wang G, Zhong W, Yu H. Nanoflower-like graphitic carbon nitride aerogel: Artful cyanuric acid-controlled synthesis and enhanced photocatalytic hydrogen evolution activity. J Colloid Interface Sci 2024; 654:268-278. [PMID: 37844498 DOI: 10.1016/j.jcis.2023.10.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The previously reported studies on cyanuric acid-assembly strategy usually ignores the promoting function of cyanuric acid in the production of g-C3N4, limiting the development of molecular assembly strategies. In this study, a cyanuric acid-controlled synthesis strategy involving the pre-assembly of cyanuric acid with melamine and subsequent one-step calcination was developed to produce a three-dimensional (3D) nanoflower-like graphitic carbon nitride (g-C3N4) aerogel. Some cyanuric acid molecules underwent a polycondensation reaction with melamine during the pre-assembly process and finally polymerized into the g-C3N4 structure during subsequent calcination. Meanwhile, the remaining cyanuric acid molecules assembled with melamine via hydrogen-bond interactions and underwent incomplete decomposition during subsequent calcination, which not only promoted the production of 3D nanoflower-like aerogel structures, but also introduced the carbonyl (CO) and hydroxyl (-OH) groups onto the g-C3N4 surface, resulting in the successful generation of a 3D nanoflower-like oxygen-modified g-C3N4 aerogel. Moreover, the fabricated g-C3N4 aerogel exhibited a greatly enhanced H2 production rate (1573 μmol h-1 g-1), which is ∼ 6.6 times higher than that of bulk g-C3N4 (239 μmol h-1 g-1) owing to the synergistic promotion function of ultrathin nanoflower-like aerogel and oxygen modification structures. This strategy provides a theoretical basis for the development of highly efficient g-C3N4 photocatalysts via molecular assembly.
Collapse
Affiliation(s)
- Xinhe Wu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Guoqiang Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Jiayue Kang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Zixuan Zheng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Guohong Wang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Wei Zhong
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Huogen Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|
8
|
Yin Z, Zhang K, Shi Y, Wang Y, Shen S. An Interface-cascading Silicon Photoanode with Strengthened Built-in Electric Field and Enriched Surface Oxygen Vacancies for Efficient Photoelectrochemical Water Splitting. Chemistry 2024:e202303895. [PMID: 38198245 DOI: 10.1002/chem.202303895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
To promote interfacial charge transfer process and accelerate surface water oxidation reaction kinetics for photoelectrochemical (PEC) water splitting over n-type Silicon (n-Si) based photoanodes, herein, starting with surface stabilized n-Si/CoOx , a NiOx /NiFeOOH composite overlayer was coated by atomic layer deposition and spray coating to fabricate the multilayer structured n-Si/CoOx /NiOx /NiFeOOH photoanode. Encouragingly, the obtained n-Si/CoOx /NiOx /NiFeOOH photoanode exhibits much increased PEC activity for water splitting, with onset potential cathodically shifted to ~0.96 V vs. RHE and photocurrent density increased to 22.6 mA cm-2 at 1.23 V vs. RHE for OER, as compared to n-Si/CoOx , even significantly surpassing the counterpart n-Si/CoOx /NiOx /FeOOH and n-Si/CoOx /NiOx /NiOOH photoanodes. Photophysical and electrochemical characterizations evidence that the deposited CoOx /NiOx /NiFeOOH composite overlayer would create large band bending and strong built-in electric field at the introduced cascading interfaces, thereby producing a large photovoltage of 650 mV to efficiently accelerate charge transfer from the n-Si substrate to the electrolyte for water oxidation. Furthermore, the surface oxygen vacancy enriched NiFeOOH overlayer could effectively catalyze the water oxidation reaction by thermodynamically reducing the energy barrier of rate determining step for OER.
Collapse
Affiliation(s)
- Zhuocheng Yin
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Kaini Zhang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Yuchuan Shi
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Yiqing Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Shaohua Shen
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| |
Collapse
|
9
|
Xu H, Liu J, Wei S, Luo J, Gong R, Tian S, Yang Y, Lei Y, Chen X, Wang J, Zhong G, Tang Y, Wang F, Cheng HM, Ding B. A multifunctional optoelectronic device based on 2D material with wide bandgap. LIGHT, SCIENCE & APPLICATIONS 2023; 12:278. [PMID: 37989728 PMCID: PMC10663625 DOI: 10.1038/s41377-023-01327-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Low-dimensional materials exhibit unique quantum confinement effects and morphologies as a result of their nanoscale size in one or more dimensions, making them exhibit distinctive physical properties compared to bulk counterparts. Among all low-dimensional materials, due to their atomic level thickness, two-dimensional materials possess extremely large shape anisotropy and consequently are speculated to have large optically anisotropic absorption. In this work, we demonstrate an optoelectronic device based on the combination of two-dimensional material and carbon dot with wide bandgap. High-efficient luminescence of carbon dot and extremely large shape anisotropy (>1500) of two-dimensional material with the wide bandgap of >4 eV cooperatively endow the optoelectronic device with multi-functions of optically anisotropic blue-light emission, visible light modulation, wavelength-dependent ultraviolet-light detection as well as blue fluorescent film assemble. This research opens new avenues for constructing multi-function-integrated optoelectronic devices via the combination of nanomaterials with different dimensions.
Collapse
Affiliation(s)
- Hongwei Xu
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jingwei Liu
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Sheng Wei
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jie Luo
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Rui Gong
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Siyuan Tian
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, China
| | - Yiqi Yang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, China
| | - Yukun Lei
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, China
| | - Xinman Chen
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443007, China
| | - Gaokuo Zhong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yongbing Tang
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Feng Wang
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Hui-Ming Cheng
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Baofu Ding
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
- Shenzhen Geim Graphene Center (SGC), Tsinghua-Berkeley Shenzhen Institute (TBSI) & Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
10
|
Stepanova A, Tite T, Ivanenko I, Enculescu M, Radu C, Culita DC, Rostas AM, Galca AC. TiO 2 Phase Ratio's Contribution to the Photocatalytic Activity. ACS OMEGA 2023; 8:41664-41673. [PMID: 37970036 PMCID: PMC10634250 DOI: 10.1021/acsomega.3c05890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Photocatalysis is one of the approaches for solving environmental issues derived from extremely harmful pollution caused by industrial dyes, medicine, and heavy metals. Titanium dioxide is among the most promising photocatalytic semiconductors; thus, in this work, TiO2 powders were prepared by a hydrothermal synthesis using titanium tetrachloride TiCl4 as a Ti source. The effect of the hydrochloric acid (HCl) concentration on TiO2 formation was analyzed, in which a thorough morpho-structural analysis was performed employing different analysis methods like XRD, Raman spectroscopy, SEM/TEM, and N2 physisorption. EPR spectroscopy was employed to characterize the paramagnetic defect centers and the photogeneration of reactive oxygen species. Photocatalytic properties were tested by photocatalytic degradation of the rhodamine B (RhB) dye under UV light irradiation and using a solar simulator. The pH value directly influenced the formation of the TiO2 phases; for less acidic conditions, the anatase phase of TiO2 crystallized, with a crystallite size of ≈9 nm. Promising results were observed for TiO2, which contained 76% rutile, showing a 96% degradation of RhB under the solar simulator and 91% under UV light after 90 min irradiation, and the best result showed that the sample with 67% of the anatase phase after 60 min irradiation under the solar simulator had a 99% degradation efficiency.
Collapse
Affiliation(s)
- Anna Stepanova
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Teddy Tite
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Iryna Ivanenko
- National
Technical University of Ukraine Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine
| | - Monica Enculescu
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Cristian Radu
- National
Institute of Materials Physics, Magurele 077125, Romania
| | - Daniela Cristina Culita
- Institute
of Physical Chemistry Ilie Murgulescu, Romanian Academy, Bucharest 060021, Romania
| | - Arpad Mihai Rostas
- National
Institute of Isotopic and Molecular Technologies, Cluj-Napoca 400293, Romania
| | | |
Collapse
|
11
|
Wang J, Li M, Jin Z. A 1T-WS 2 "electron pump" regulates charge transfer over ZnCdS/NiV-LDH p-n heterostructures for enhanced photocatalytic hydrogen evolution. NANOSCALE 2023; 15:16131-16143. [PMID: 37754749 DOI: 10.1039/d3nr03391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Dynamics and morphology play a crucial role in the field of photocatalytic hydrogen production. Regulating the transfer of photogenerated charges is an effective way to improve the catalytic activity. In this paper, 1T-WS2 is introduced into a p-n heterostructure, ZnCdS/NiV-LDH, as a metalloid electron pump to transfer photogenerated electrons from semiconductors with larger work functions to metalloid materials with smaller work functions, effectively to attract photogenerated electrons, and promote charge rearrangement at the p-n heterostructure interface, so as to achieve the best utilization efficiency of photogenerated charges. Second, adjusting the morphology to increase the light absorption area of the catalyst is also a way to improve the photocatalytic activity. Two different nanosheet structures dispersed heavily stacked ZnCdS, increasing the light absorption area of the system. The optimal catalyst ratio achieves a hydrogen evolution rate of 22.37 mmol g-1 h-1, achieving 7.98% AQE and 2.12% STH conversion efficiency at 450 nm. The potential mechanism was demonstrated through in situ XPS. This study provides new insights into adding "electron pumps" to heterostructures to enhance photocatalytic activity.
Collapse
Affiliation(s)
- Jingzhi Wang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China.
| | - Mei Li
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China.
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China.
| |
Collapse
|
12
|
Fabrication of a Plasmonic Heterojunction for Degradation of Oxytetracycline Hydrochloride and Removal of Cr(VI) from Water. Catalysts 2022. [DOI: 10.3390/catal12121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A novel Ag/Ag2CO3/BiVO4 plasmonic photocatalyst was successfully prepared by depositing Ag nanoparticles on the surface of Ag2CO3/BiVO4 through the photoreduction reaction. Due to the existence of this novel heterojunction photocatalyst structure, not only can it prevent the photogenerated charge recombination, but the unique properties of Ag also have a great advantage in the absorption of light. The Ag/Ag2CO3/BiVO4 photocatalyst showed good catalytic performance in the degradation of oxytetracycline hydrochloride (OTH) and removal of Cr6+, and the degradation rate of OTH reached 98.0% after 150 min of illumination. The successful preparation of Ag/Ag2CO3/BiVO4 was confirmed by a series of characterization methods, and the importance of •OH and h+ radicals in the degradation of OTH was demonstrated. In addition, the photocatalytic mechanism of Ag/Ag2CO3/BiVO4 photocatalyst was systematically studied in terms of degradation of OTH and reduction of Cr6+. This study is of great importance for the development of novel plasmonic heterojunction photocatalysts and to meet future environmental requirements.
Collapse
|