1
|
Gurses SM, Price T, Zhang A, Frank JH, Hansen N, Osborn DL, Kulkarni A, Kronawitter CX. Near-Surface Gas-Phase Methoxymethanol Is Generated by Methanol Oxidation over Pd-Based Catalysts. J Phys Chem Lett 2021; 12:11252-11258. [PMID: 34762803 DOI: 10.1021/acs.jpclett.1c03381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Catalytic conversion of alcohols underlies many commodity and fine chemical syntheses, but a complete mechanistic understanding is lacking. We examined catalytic oxidative conversion of methanol near atmospheric pressure using operando small-aperture molecular beam time-of-flight mass spectrometry, interrogating the gas phase 500 μm above Pd-based catalyst surfaces. In addition to a variety of stable C1-3 species, we detected methoxymethanol (CH3OCH2OH)─a rarely observed and reactive C2 oxygenate that has been proposed to be a critical intermediate in methyl formate production. Methoxymethanol is observed above Pd, AuxPdy alloys, and oxide-supported Pd (common methanol oxidation catalysts). Experiments establish temperature and reactant feed ratio dependences of methoxymethanol generation, and calculations using density functional theory are used to examine the energetics of its likely formation pathway. These results suggest that future development of catalysts and microkinetic models for methanol oxidation should be augmented and constrained to accommodate the formation, desorption, adsorption, and surface reactions involving methoxymethanol.
Collapse
Affiliation(s)
- Sadi M Gurses
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Trevor Price
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Angie Zhang
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Jonathan H Frank
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - David L Osborn
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Coleman X Kronawitter
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
2
|
Abstract
Methyl formate is a key component for both defossilized industry and mobility. The current industrial production via carbonylation of methanol has various disadvantages such as high requirements on reactant purity and low methanol conversion rates. In addition, there is a great interest in replacing the conventional homogeneous catalyst with a heterogeneous one, among other things to improve the downstream processing. This is why new approaches for methyl formate are sought. This review summarizes promising approaches for methyl formate production using methanol as a reactant.
Collapse
|
3
|
Geng L, Li G, Zhang X, Wang X, Li C, Liu Z, Zhang DS, Zhang YZ, Wang G, Han H. Rational design of CuO/SiO2 nanocatalyst with anchor structure and hydrophilic surface for efficient hydrogenation of nitrophenol. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
Shan J, Giannakakis G, Liu J, Cao S, Ouyang M, Li M, Lee S, Flytzani-Stephanopoulos M. PdCu Single Atom Alloys for the Selective Oxidation of Methanol to Methyl Formate at Low Temperatures. Top Catal 2020. [DOI: 10.1007/s11244-020-01288-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|