1
|
Kamilari E, Stanton C, Reen FJ, Ross RP. Uncovering the Biotechnological Importance of Geotrichum candidum. Foods 2023; 12:foods12061124. [PMID: 36981051 PMCID: PMC10048088 DOI: 10.3390/foods12061124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Fungi make a fundamental contribution to several biotechnological processes, including brewing, winemaking, and the production of enzymes, organic acids, alcohols, antibiotics, and pharmaceuticals. The present review explores the biotechnological importance of the filamentous yeast-like fungus Geotrichum candidum, a ubiquitous species known for its use as a starter in the dairy industry. To uncover G. candidum's biotechnological role, we performed a search for related work through the scientific indexing internet services, Web of Science and Google Scholar. The following query was used: Geotrichum candidum, producing about 6500 scientific papers from 2017 to 2022. From these, approximately 150 that were associated with industrial applications of G. candidum were selected. Our analysis revealed that apart from its role as a starter in the dairy and brewing industries, this species has been administered as a probiotic nutritional supplement in fish, indicating improvements in developmental and immunological parameters. Strains of this species produce a plethora of biotechnologically important enzymes, including cellulases, β-glucanases, xylanases, lipases, proteases, and α-amylases. Moreover, strains that produce antimicrobial compounds and that are capable of bioremediation were identified. The findings of the present review demonstrate the importance of G. candidum for agrifood- and bio-industries and provide further insights into its potential future biotechnological roles.
Collapse
Affiliation(s)
- Eleni Kamilari
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
- Synthesis and Solid State Pharmaceutical Centre, University College Cork, T12 YT20 Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
2
|
Perkins V, Vignola S, Lessard MH, Plante PL, Corbeil J, Dugat-Bony E, Frenette M, Labrie S. Phenotypic and Genetic Characterization of the Cheese Ripening Yeast Geotrichum candidum. Front Microbiol 2020; 11:737. [PMID: 32457706 PMCID: PMC7220993 DOI: 10.3389/fmicb.2020.00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/30/2020] [Indexed: 01/04/2023] Open
Abstract
The yeast Geotrichum candidum (teleomorph Galactomyces candidus) is inoculated onto mold- and smear-ripened cheeses and plays several roles during cheese ripening. Its ability to metabolize proteins, lipids, and organic acids enables its growth on the cheese surface and promotes the development of organoleptic properties. Recent multilocus sequence typing (MLST) and phylogenetic analyses of G. candidum isolates revealed substantial genetic diversity, which may explain its strain-dependant technological capabilities. Here, we aimed to shed light on the phenotypic and genetic diversity among eight G. candidum and three Galactomyces spp. strains of environmental and dairy origin. Phenotypic tests such as carbon assimilation profiles, the ability to grow at 35°C and morphological traits on agar plates allowed us to discriminate G. candidum from Galactomyces spp. The genomes of these isolates were sequenced and assembled; whole genome comparison clustered the G. candidum strains into three subgroups and provided a reliable reference for MLST scheme optimization. Using the whole genome sequence as a reference, we optimized an MLST scheme using six loci that were proposed in two previous MLST schemes. This new MLST scheme allowed us to identify 15 sequence types (STs) out of 41 strains and revealed three major complexes named GeoA, GeoB, and GeoC. The population structure of these 41 strains was evaluated with STRUCTURE and a NeighborNet analysis of the combined six loci, which revealed recombination events between and within the complexes. These results hint that the allele variation conferring the different STs arose from recombination events. Recombination occurred for the six housekeeping genes studied, but most likely occurred throughout the genome. These recombination events may have induced an adaptive divergence between the wild strains and the cheesemaking strains, as observed for other cheese ripening fungi. Further comparative genomic studies are needed to confirm this phenomenon in G. candidum. In conclusion, the draft assembly of 11 G. candidum/Galactomyces spp. genomes allowed us to optimize a genotyping MLST scheme and, combined with the assessment of their ability to grow under different conditions, provides a reliable tool to cluster and eventually improves the selection of G. candidum strains.
Collapse
Affiliation(s)
- Vincent Perkins
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| | - Stéphanie Vignola
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| | - Marie-Hélène Lessard
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| | - Pier-Luc Plante
- Big Data Research Center, Université Laval, Quebec City, QC, Canada
| | - Jacques Corbeil
- Big Data Research Center, Université Laval, Quebec City, QC, Canada
| | - Eric Dugat-Bony
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Thiverval-Grignon, France
| | - Michel Frenette
- Oral Ecology Research Group, Faculty of Dental Medicine, Université Laval, Quebec City, QC, Canada
- Faculty of Science and Engineering, Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, QC, Canada
| | - Steve Labrie
- Department of Food Sciences and Nutrition, STELA Dairy Research Center, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
3
|
|
4
|
Abstract
All cheeses have a common set of principles that involve a complex web of chemical, biochemical, and microbiological changes. These changes first transform milk into fresh or unripened cheese. Although some cheeses are consumed immediately after manufacture, most are subsequently aged or ripened for weeks to years depending on the variety. During aging or ripening, a cheese's sensory characteristics undergo multifaceted and often dramatic changes. The steps performed during the earliest days of the cheesemaking process are especially critical because they establish the chemical characteristics of the cheese at the start of ripening, and these characteristics in turn affect the ripening process. For most cheeses, the key process on the first day of cheesemaking is the fermentation of lactose to lactic acid by bacteria. The rate at which lactic acid is produced profoundly affects the initial chemical characteristics of the cheese, which selectively influence the complex microbial populations that find their way from the milk and surrounding environment into the cheese. This article discusses the basics of cheesemaking by integrating the practical steps that all cheesemakers use with the scientific principles on which those practices are based. The aim is to paint a conceptual picture in which the microbiology of cheese "fits together" with the basic practices of cheesemaking and the scientific principles that underlie them.
Collapse
|
5
|
Abstract
ABSTRACT
As the manufacture of cheese relies in part on the select outgrowth of microorganisms, such conditions can also allow for the multiplication of unwanted contaminants. Milk ultimately becomes contaminated with microorganisms originating from infection, the farm environment, and feedstuffs, as well as milking and processing equipment. Thus, poor sanitation, improper milk handling, and animal health issues can result in not only decreased yield and poor quality but also sporadic cases and outbreaks of dairy-related disease. The entry, establishment, and persistence of food-borne pathogens in dairy processing environments also present a considerable risk to products postprocessing. Food safety management systems coupled with regulatory policies and microbiological standards for milk and milk products currently implemented in various nations work to reduce risk while improving the quality and safety of cheese and other dairy products. With that, cheese has enjoyed an excellent food safety record with relatively few outbreaks of food-borne disease considering the amount of cheese produced and consumed worldwide. However, as cheese production and consumption continue to grow, we must remain vigilant in ensuring the continued production of safe, high-quality cheese.
Collapse
|
6
|
Gori K, Mortensen C, Jespersen L. A comparative study of the anti-listerial activity of smear bacteria. Int Dairy J 2010. [DOI: 10.1016/j.idairyj.2010.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
High biodiversity and potent anti-listerial action of complex red smear cheese microbial ripening consortia. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0083-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
Grattepanche F, Miescher-Schwenninger S, Meile L, Lacroix C. Recent developments in cheese cultures with protective and probiotic functionalities. ACTA ACUST UNITED AC 2008. [DOI: 10.1051/dst:2008013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
9
|
Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South german red smear cheese. Appl Environ Microbiol 2008; 74:2210-7. [PMID: 18281427 DOI: 10.1128/aem.01663-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of smear-ripened cheese critically depends on the surface growth of multispecies microbial consortia comprising bacteria and yeasts. These microorganisms often originate from the cheese-making facility and, over many years, have developed into rather stable, dairy-specific associations. While commercial smear starters are frequently used, it is unclear to what degree these are able to establish successfully within the resident microbial consortia. Thus, the fate of the smear starters of a German Limburger cheese subjected to the "old-young" smearing technique was investigated during ripening. The cheese milk was supplemented with a commercial smear starter culture containing Debaryomyces hansenii, Galactomyces geotrichum, Arthrobacter arilaitensis, and Brevibacterium aurantiacum. Additionally, the cheese surface was inoculated with an extremely stable in-house microbial consortium. A total of 1,114 yeast and 1,201 bacterial isolates were identified and differentiated by Fourier transform infrared spectroscopy. Furthermore, mitochondrial DNA restriction fragment length polymorphism, random amplified polymorphic DNA, repetitive PCR, and pulsed field gel electrophoresis analyses were used to type selected isolates below the species level. The D. hansenii starter strain was primarily found early in the ripening process. The G. geotrichum starter strain in particular established itself after relocation to a new ripening room. Otherwise, it occurred at low frequencies. The bacterial smear starters could not be reisolated from the cheese surface at all. It is concluded that none of the smear starter strains were able to compete significantly and in a stable fashion against the resident microbial consortia, a result which might have been linked to the method of application. This finding raises the issue of whether addition of starter microorganisms during production of this type of cheese is actually necessary.
Collapse
|
10
|
|
11
|
Jakob K, Satorhelyi P, Lange C, Wendisch VF, Silakowski B, Scherer S, Neuhaus K. Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation. J Bacteriol 2007; 189:5582-90. [PMID: 17526706 PMCID: PMC1951826 DOI: 10.1128/jb.00082-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Corynebacteria form an important part of the red smear cheese microbial surface consortium. To gain a better understanding of molecular adaptation due to low pH induced by lactose fermentation, the global gene expression profile of Corynebacterium glutamicum adapted to pH 5.7 with lactic acid under continuous growth in a chemostat was characterized by DNA microarray analysis. Expression of a total of 116 genes was increased and that of 90 genes was decreased compared to pH 7.5 without lactic acid, representing 7% of the genes in the genome. The up-regulated genes encode mainly transcriptional regulators, proteins responsible for export, import, and metabolism, and several proteins of unknown function. As much as 45% of the up-regulated open reading frames code for hypothetical proteins. These results were validated using real-time reverse transcription-PCR. To characterize the functions of 38 up-regulated genes, 36 single-crossover disruption mutants were generated and analyzed for their lactic acid sensitivities. However, only a sigB knockout mutant showed a highly significant negative effect on growth at low pH, suggesting a function in organic-acid adaptation. A sigE mutant already displayed growth retardation at neutral pH but grew better at acidic pH than the sigB mutant. The lack of acid-sensitive phenotypes in 34 out of 36 disrupted genes suggests either a considerable redundancy in acid adaptation response or coincidental effects. Other up-regulated genes included genes for ion transporters and metabolic pathways, including carbohydrate and respiratory metabolism. The enhanced expression of the nrd (ribonucleotide reductase) operon and a DNA ATPase repair protein implies a cellular response to combat acid-induced DNA damage. Surprisingly, multiple iron uptake systems (totaling 15% of the genes induced >or=2-fold) were induced at low pH. This induction was shown to be coincidental and could be attributed to iron-sequestering effects in complex media at low pH.
Collapse
Affiliation(s)
- Kinga Jakob
- Lehrstuhl für Mikrobielle Okologie, Technische Universität München, D-85354 Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Goerges S, Aigner U, Silakowski B, Scherer S. Inhibition of Listeria monocytogenes by food-borne yeasts. Appl Environ Microbiol 2006; 72:313-8. [PMID: 16391059 PMCID: PMC1352201 DOI: 10.1128/aem.72.1.313-318.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 10/12/2005] [Indexed: 11/20/2022] Open
Abstract
Many bacteria are known to inhibit food pathogens, such as Listeria monocytogenes, by secreting a variety of bactericidal and bacteriostatic substances. In sharp contrast, it is unknown whether yeast has an inhibitory potential for the growth of pathogenic bacteria in food. A total of 404 yeasts were screened for inhibitory activity against five Listeria monocytogenes strains. Three hundred and four of these yeasts were isolated from smear-ripened cheeses. Most of the yeasts were identified by Fourier transform infrared spectroscopy. Using an agar-membrane screening assay, a fraction of approximately 4% of the 304 red smear cheese isolates clearly inhibited growth of L. monocytogenes. Furthermore, 14 out of these 304 cheese yeasts were cocultivated with L. monocytogenes WSLC 1364 on solid medium to test the antilisterial activity of yeast in direct cell contact with Listeria. All yeasts inhibited L. monocytogenes to a low degree, which is most probably due to competition for nutrients. However, one Candida intermedia strain was able to reduce the listerial cell count by 4 log units. Another four yeasts, assigned to C. intermedia (three strains) and Kluyveromyces marxianus (one strain), repressed growth of L. monocytogenes by 3 log units. Inhibition of L. monocytogenes was clearly pronounced in the cocultivation assay, which simulates the conditions and contamination rates present on smear cheese surfaces. We found no evidence that the unknown inhibitory molecule is able to diffuse through soft agar.
Collapse
Affiliation(s)
- Stefanie Goerges
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany
| | | | | | | |
Collapse
|
13
|
Müller-Hellwig S, Groschup MH, Pichner R, Gareis M, Märtlbauer E, Scherer S, Loessner MJ. Biochemical evidence for the proteolytic degradation of infectious prion protein PrPsc in hamster brain homogenates by foodborne bacteria. Syst Appl Microbiol 2005; 29:165-71. [PMID: 16464698 DOI: 10.1016/j.syapm.2005.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Indexed: 11/24/2022]
Abstract
PrP(Sc) is a general term to describe the infectious agent causing transmissible spongiform encephalopathy (TSE), and the protease-resistant form of cellular PrP(C). In this study, we have identified several protease-secreting bacteria able to degrade PrP(Sc) under more or less native conditions (30 degrees C, pH 8), focusing on strains isolated mainly from cheese. One hundred and ninty-nine protease-secreting isolates belonging to the Actinomycetales and Bacillales were screened for the expression of PrP(Sc) degrading activity by a Western blot procedure. Only 6 strains belonging to the following species were found to exhibit such an activity: Arthrobacter nicotianae, Bacillus licheniformis, Brachybacterium conglomeratum, Brachybacterium tyrofermentans and Staphylococcus sciuri and Serratia spp. As revealed by a general protease assay based on dye-labeled Azocoll substrate, the PrP(Sc) degrading activity was not directly correlated to the total level of secreted proteolytic activity of these organisms. This indicates that specific proteases are required for the degradation of PrP(Sc). Our study also suggests the potential use of such starter bacteria or their proteases for application in PrP(Sc) degradation and decontamination under native conditions.
Collapse
Affiliation(s)
- Simone Müller-Hellwig
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
| | | | | | | | | | | | | |
Collapse
|