1
|
Fong YD, Chu JJH. Natural products as Zika antivirals. Med Res Rev 2022; 42:1739-1780. [PMID: 35593443 PMCID: PMC9540820 DOI: 10.1002/med.21891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is an arbovirus belonging to the flavivirus genus and is transmitted in Aedes mosquito vectors. Since its discovery in humans in 1952 in Uganda, ZIKV has been responsible for many outbreaks in South America, Africa, and Asia. Patients infected with ZIKV are usually asymptomatic; mild symptoms include fever, joint and muscle pain, and fatigue. However, severe infections may have neurological implications, such as Guillain-Barré syndrome and fetal microcephaly. To date, there are no existing approved therapeutic drugs or vaccines against ZIKV infections; treatments mainly target the symptoms of infection. Preventive measures against mosquito breeding are the main strategy for limiting the spread of the virus. Antiviral drug research for the treatment of ZIKV infection has been rapidly developing, with many drug candidates emerging from drug repurposing studies, and compound screening. In particular, several studies have demonstrated the potential of natural products as antivirals for ZIKV infection. Hence, this paper will review recent advances in natural products in ZIKV antiviral drug discovery.
Collapse
Affiliation(s)
- Yuhui Deborah Fong
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Justin Jang Hann Chu
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
2
|
Su CF, Jiang L, Zhang XW, Iyaswamy A, Li M. Resveratrol in Rodent Models of Parkinson's Disease: A Systematic Review of Experimental Studies. Front Pharmacol 2021; 12:644219. [PMID: 33967780 PMCID: PMC8100515 DOI: 10.3389/fphar.2021.644219] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/06/2021] [Indexed: 12/09/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease featured by progressive degeneration of nigrostriatal dopaminergic neurons (DA) accompanied with motor function impairment. Accumulating evidence has demonstrated that natural compounds from herbs have potent anti-PD efficacy in PD models. Among those compounds, resveratrol, a polyphenol found in many common plants and fruits, is more effective against PD. Resveratrol has displayed a potent neuroprotective efficacy in several PD animal models. However, there is still no systematic analysis of the quality of methodological design of these studies, nor of their results. In this review, we retrieved and analyzed 18 studies describing the therapeutic effect of resveratrol on PD animal models. There are 5 main kinds of PD rodent models involved in the 18 articles, including chemical-induced (MPTP, rotenone, 6-OHDA, paraquat, and maneb) and transgenic PD models. The neuroprotective mechanisms of resveratrol were mainly concentrated on the antioxidation, anti-inflammation, ameliorating mitochondrial dysfunction, and motor function. We discussed the disadvantages of different PD animal models, and we used meta-analysis approach to evaluate the results of the selected studies and used SYRCLE’s risk of bias tool to evaluate the methodological quality. Our analytical approach minimized the bias of different studies. We have also summarized the pharmacological mechanisms of resveratrol on PD models as reported by the researchers. The results of this study support the notion that resveratrol has significant neuroprotective effects on different PD models quantified using qualitative and quantitative methods. The collective information in our review can guide researchers to further plan their future experiments without any hassle regarding preclinical and clinical studies. In addition, this collective assessment of animal studies can provide a qualitative analysis of different PD animal models, either to guide further testing of these models or to avoid unnecessary duplication in their future research.
Collapse
Affiliation(s)
- Cheng-Fu Su
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Li Jiang
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiao-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
3
|
Corte-Real J, Archaimbault A, Schleeh T, Cocco E, Herrmann M, Guignard C, Hausman JF, Iken M, Legay S. Handling wine pomace: The importance of drying to preserve phenolic profile and antioxidant capacity for product valorization. J Food Sci 2021; 86:892-900. [PMID: 33590481 DOI: 10.1111/1750-3841.15652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 11/26/2022]
Abstract
Four different wine grape pomaces (GP) (Vitis vinifera) varieties, Auxerrois, Pinot Blanc, Gamay and Pinot Noir, and obtained from white, rosé or red wine vinification, were considered for possible valorization in food supplement industry. Stabilization of GP by drying is paramount prior to further processing in the valorization chain, as GP might suffer spoilage over time. The objectives of this work were therefore to: evaluate the effect of microbiological spoilage and drying on the polyphenol profile and antioxidant capacity of GP; define a drying procedure by comparing kinetics of freeze-drying (FD) and vacuum oven (VO) (at 60 °C and 40 °C). Microbiological spoilage led to significant losses (P < 0.01) of antioxidant capacity (40% to 87%) and total phenolic content (70% to 90%), while drying had no significant effect. FD and VO at 60 °C drying kinetics exhibited similar drying curves, and a dry weight (DW) plateau was reached by 48 hr. In contrast VO at 40 °C required 170 hr to reach similar DW values, pointing out the importance of temperature when opting for VO technology. Antioxidant capacity of GP extracts did not differ between drying methods. Interestingly, GPs from white and rosé wines (AUX, PB, and GAM) had up to 3.5 times higher content (P < 0.001) of total polyphenols compared to PN, obtained from red wine. These results reinforce the importance of drying of GP as a pretreatment, which otherwise could result in significant product degradation. Additionally, we propose white and rosé GP as more interesting sources for valorization, with higher phenolic content, compared to red wine GP.
Collapse
Affiliation(s)
- Joana Corte-Real
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 rue Bommel, Z.A.E. Robert Steichen, Hautcharage, L-4940, Luxembourg
| | | | - Thomas Schleeh
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 rue Bommel, Z.A.E. Robert Steichen, Hautcharage, L-4940, Luxembourg
| | - Emmanuelle Cocco
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 rue Bommel, Z.A.E. Robert Steichen, Hautcharage, L-4940, Luxembourg
| | - Markus Herrmann
- PM-International AG, 15 Wäistroos, Schengen, L-5445, Luxembourg
| | - Cédric Guignard
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 rue Bommel, Z.A.E. Robert Steichen, Hautcharage, L-4940, Luxembourg
| | - Jean-François Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 rue Bommel, Z.A.E. Robert Steichen, Hautcharage, L-4940, Luxembourg
| | - Marcus Iken
- PM-International AG, 15 Wäistroos, Schengen, L-5445, Luxembourg
| | - Sylvain Legay
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 rue Bommel, Z.A.E. Robert Steichen, Hautcharage, L-4940, Luxembourg
| |
Collapse
|
4
|
Yang MF, Yao X, Chen LM, Gu JY, Yang ZH, Chen HF, Zheng X, Zheng ZT. Synthesis and biological evaluation of resveratrol derivatives with anti-breast cancer activity. Arch Pharm (Weinheim) 2020; 353:e2000044. [PMID: 32342549 DOI: 10.1002/ardp.202000044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Resveratrol is a natural phytoestrogen produced by plants to protect themselves from injury, UV irradiation, and fungal attack. The main active structure is E-resveratrol, which has many pharmacological activities. As the structure of resveratrol is similar to the natural estrogen 17β-estradiol and the synthetic estrogen E-diethylstilbestrol, resveratrol is used in reducing the incidence of breast cancer. However, the therapeutic application of resveratrol is limited due to its low bioavailability. To improve its bioavailability and pharmacological activity, some resveratrol derivatives have been designed and synthesized by substitutions of methoxy, hydroxyl, and other functional groups or heterocyclic esterification either on the "A" or "B" ring, and double bonds were replaced by imine bonds and isometric heterocycles such as naphthyl and imidazole, or synthetic resveratrol oligomers. The structures, synthetic routes, and evaluation of the biological activities of these compounds are discussed. These are aimed at providing some references for the study of resveratrol derivatives in anti-breast cancer treatment.
Collapse
Affiliation(s)
- Mei-Fang Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xu Yao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Li-Mei Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jin-Ying Gu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ze-Hua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hong-Fei Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xing Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zi-Tong Zheng
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Jenzer H, Sadeghi-Reeves L. Nutrigenomics-Associated Impacts of Nutrients on Genes and Enzymes With Special Consideration of Aromatase. Front Nutr 2020; 7:37. [PMID: 32328497 PMCID: PMC7161344 DOI: 10.3389/fnut.2020.00037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Interactions are occurring in the course of liberation, absorption, distribution, metabolism, and excretion of active ingredients, or at the target receptors. They are causing therapy failures and undesirable events. Forty-seven of fifty-seven human hepatic isoenzymes are specific and relevant in hormone and vitamin metabolism and biosynthesis. Aromatase (syn. CYP19A1) is one of the specific CYP450 isoenzymes so far not elucidated in detail. As aromatase-inhibiting phytochemicals are currently recommended for breast cancer prevention and as add-on accompanying aromatase-inhibitor pharmacotherapy, it was the aim of this literature review to assess whether a common interpretation on genetic and -omics basis could be found. Articles retrieved showed that traditional antioxidation diet is one of the most approved explanations of inhibition of aromatase by phytonutrients of flavonoid derivatives. Flavonoids compete for the oxygen provided by the heme moiety of aromatase in the course of aromatase-catalyzed conversion of steroid precursors to estrogens. Flavonoids are therefore promoted for breast cancer prevention. A further explanation of flavonoids' mechanism of action proposed was related to enzymatic histone deacetylation. By keeping DNA-structure wide through a high acetylation degree, acetylated histones favor transcription and replication. This mechanism corresponds to a procedure of switching genes on. Inhibiting acetylation and therefore switching genes off might be an important regulation of repressing cancer genes. Aromatase expression depends on the genotype and phenotype of a person. Aromatase itself depends on the expression of the heme moiety encoded in the genotype. Biosynthesis of porphyrins in turn depends on the substrates succinate and glycine, as well as on a series of further enzymes, with ALA synthetase as the rate-limiting step. The effect of the heme moiety as prosthetic group of aromatase further depends on the absorption of iron as a function of pH and redox state. To assess the function of aromatase precisely, multiple underlying biochemical pathways need to be evaluated. As a conclusion, the genetic regulation of metabolism is a complex procedure affecting multiple pathways. To understand a metabolic step, multiple underlying individually performing reactions need to be considered if personalized (nutritional) medicine should bring an advantage for a patient. Nutrition sciences need to consider the genome of an individual to truly find answers to nutrition-derived non-communicable diseases. With current GWAS (genome-wide association study) approaches, inherited errors of metabolism are identified and ideally treated effectively. It is much more difficult to get a precise genetic profile for non-communicable diseases stemming from multifactorial causes. Polygenic risks evaluation is feasible but diagnostic tools are not yet available in a desired extent. Neither flavonoid researchers nor providers of genetic testing kits are going into the details needed for a truly personalized nutritional medicine. The next step with profiling the exome and then the whole genome is on the threshold of becoming routine diagnosis and of bringing the desired details.
Collapse
Affiliation(s)
- Helena Jenzer
- Department of Health Professions, aR&D in Nutrition and Dietetics, Bern University of Applied Sciences BFH, Bern, Switzerland
- Internistic Service, Hospital Pharmacy, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Leila Sadeghi-Reeves
- Department of Health Professions, aR&D in Nutrition and Dietetics, Bern University of Applied Sciences BFH, Bern, Switzerland
| |
Collapse
|
6
|
Jitrangsri K, Chaidedgumjorn A, Satiraphan M. Supercritical fluid extraction (SFE) optimization of trans-resveratrol from peanut kernels ( Arachis hypogaea) by experimental design. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:1486-1494. [PMID: 32180645 PMCID: PMC7054580 DOI: 10.1007/s13197-019-04184-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/07/2019] [Accepted: 11/17/2019] [Indexed: 10/25/2022]
Abstract
The aim of this study was to develop the optimal conditions for supercritical fluid extraction (SFE) of bioactive trans-resveratrol from peanut kernels using an experimental design. The variables taken into account were extraction pressure, extraction temperature, extraction time and amount of modifier. The model was first set for significant factor screening by full factorial design, then, optimized by central composite designs. The optimal extraction parameters were a pressure of 7000 psi, temperature of 70 °C and time of 50 min while amount of modifier did not show significant effect. The quantity of trans-resveratrol was predictable by a full quadratic regression equation with R2(predict) = 95.56%. The predicted trans-resveratrol concentration in peanut samples was 0.7998 µg/g while the experimental concentration was 0.7884 ± 0.1553 µg/g. Conventional solvent extraction demonstrated less selectivity and needed more clean-up process prior to HPLC analysis. Our optimized SFE condition was effective to maximize trans-resveratrol extraction with less contaminants and gave the comparable amount of trans-resveratrol between actual and predicted values.
Collapse
Affiliation(s)
- Kritamorn Jitrangsri
- Faculty of Pharmacy, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, 73000 Thailand
| | - Amornrut Chaidedgumjorn
- Faculty of Pharmacy, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, 73000 Thailand
| | - Malai Satiraphan
- Faculty of Pharmacy, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, 73000 Thailand
| |
Collapse
|
7
|
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Nanosized Transferosome-Based Intranasal In Situ Gel for Brain Targeting of Resveratrol: Formulation, Optimization, In Vitro Evaluation, and In Vivo Pharmacokinetic Study. AAPS PharmSciTech 2019; 20:181. [PMID: 31049748 DOI: 10.1208/s12249-019-1353-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/26/2019] [Indexed: 12/30/2022] Open
Abstract
Resveratrol (RES) is a potent antioxidant used for the management of several central nervous system diseases. RES bioavailability is less than 1 owing to its low solubility and extensive intestinal and hepatic metabolism. The aim of the study was to enhance RES bioavailability through developing intranasal transferosomal mucoadhesive gel. Reverse evaporation-vortexing sonication method was employed to prepare RES-loaded transferosomes. Transferosomes were developed via 34 definitive screening design, using soya lecithin, permeation enhancers, and surfactants. The optimized formula displayed spherical shape with vesicle size of 83.79 ± 2.54 nm and entrapment efficiency (EE%) of 72.58 ± 4.51%. Mucoadhesive gels were prepared and evaluated, then optimized RES transferosomes were incorporated into the selected gel and characterized using FTIR spectroscopy, in vitro release, and ex vivo permeation study. Histopathological examination of nasal mucosa and in vivo pharmacokinetic study were conducted. In vitro drug release from transferosomal gel was 65.87 ± 2.12% and ex vivo permeation was 75.95 ± 3.19%. Histopathological study confirmed the safety of the optimized formula. The Cmax of RES in the optimized RES trans-gel was 2.15 times higher than the oral RES suspension and AUC(0-∞) increased by 22.5 times. The optimized RES trans-gel developed intranasal safety and bioavailability enhancement through passing hepatic and intestinal metabolism.
Collapse
|
8
|
Rangarajan P, Karthikeyan A, Dheen ST. Role of dietary phenols in mitigating microglia-mediated neuroinflammation. Neuromolecular Med 2016; 18:453-64. [PMID: 27465151 DOI: 10.1007/s12017-016-8430-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/21/2016] [Indexed: 12/30/2022]
|
9
|
Gaensly F, Agustini BC, da Silva GA, Picheth G, Bonfim TMB. Autochthonous yeasts with β-glucosidase activity increase resveratrol concentration during the alcoholic fermentation of Vitis labrusca grape must. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
10
|
Shen C, Stein P, Klösgen B. Partitioning of resveratrol between pentane and DMSO – A contribution to resveratrol–biomembrane interactions. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Chachay VS, Macdonald GA, Martin JH, Whitehead JP, O'Moore-Sullivan TM, Lee P, Franklin M, Klein K, Taylor PJ, Ferguson M, Coombes JS, Thomas GP, Cowin GJ, Kirkpatrick CMJ, Prins JB, Hickman IJ. Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2014; 12:2092-103.e1-6. [PMID: 24582567 DOI: 10.1016/j.cgh.2014.02.024] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD), characterized by accumulation of hepatic triglycerides (steatosis), is associated with abdominal obesity, insulin resistance, and inflammation. Although weight loss via calorie restriction reduces features of NAFLD, there is no pharmacologic therapy. Resveratrol is a polyphenol that prevents high-energy diet-induced steatosis and insulin resistance in animals by up-regulating pathways that regulate energy metabolism. We performed a placebo-controlled trial to assess the effects of resveratrol in patients with NAFLD. METHODS Overweight or obese men diagnosed with NAFLD were recruited from hepatology outpatient clinics in Brisbane, Australia from 2011 through 2012. They were randomly assigned to groups given 3000 mg resveratrol (n = 10) or placebo (n = 10) daily for 8 weeks. Outcomes included insulin resistance (assessed by the euglycemic-hyperinsulinemic clamp), hepatic steatosis, and abdominal fat distribution (assessed by magnetic resonance spectroscopy and imaging). Plasma markers of inflammation, as well as metabolic, hepatic, and antioxidant function, were measured; transcription of target genes was measured in peripheral blood mononuclear cells. Resveratrol pharmacokinetics and safety were assessed. RESULTS Eight-week administration of resveratrol did not reduce insulin resistance, steatosis, or abdominal fat distribution when compared with baseline. No change was observed in plasma lipids or antioxidant activity. Levels of alanine and aspartate aminotransferases increased significantly among patients in the resveratrol group until week 6 when compared with the placebo group. Resveratrol did not significantly alter transcription of NQO1, PTP1B, IL6, or HO1 in peripheral blood mononuclear cells. Resveratrol was well-tolerated. CONCLUSIONS Eight weeks administration of resveratrol did not significantly improve any features of NAFLD, compared with placebo, but it increased hepatic stress, based on observed increases in levels of liver enzymes. Further studies are needed to determine whether agents that are purported to mimic calorie restriction, such as resveratrol, are safe and effective for complications of obesity. Clinical trials registration no: ACTRN12612001135808.
Collapse
Affiliation(s)
- Veronique S Chachay
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia; Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, Australia.
| | - Graeme A Macdonald
- School of Medicine Metro-South, University of Queensland, Brisbane, Australia; Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia
| | - Jennifer H Martin
- School of Medicine Metro-South, University of Queensland, Brisbane, Australia
| | | | - Trisha M O'Moore-Sullivan
- School of Medicine Metro-South, University of Queensland, Brisbane, Australia; Department of Endocrinology, Princess Alexandra Hospital, Brisbane, Australia
| | - Paul Lee
- School of Medicine Metro-South, University of Queensland, Brisbane, Australia; Department of Endocrinology, Princess Alexandra Hospital, Brisbane, Australia
| | - Michael Franklin
- Department of Clinical Pharmacology, Princess Alexandra Hospital, Brisbane, Australia
| | - Kerenaftali Klein
- Queensland Clinical Trials and Biostatistics Centre, University of Queensland, Brisbane, Australia
| | - Paul J Taylor
- Department of Clinical Pharmacology, Princess Alexandra Hospital, Brisbane, Australia
| | - Maree Ferguson
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, Australia; School of Human Movement Studies, University of Queensland, Brisbane, Australia
| | - Jeff S Coombes
- School of Human Movement Studies, University of Queensland, Brisbane, Australia
| | - Gethin P Thomas
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Gary J Cowin
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | | | - Johannes B Prins
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia; Mater Medical Research Institute, Brisbane, Australia
| | - Ingrid J Hickman
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Australia; Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, Australia; Mater Medical Research Institute, Brisbane, Australia
| |
Collapse
|