1
|
Samat R, Sen S, Jash M, Ghosh S, Garg S, Sarkar J, Ghosh S. Venom: A Promising Avenue for Antimicrobial Therapeutics. ACS Infect Dis 2024; 10:3098-3125. [PMID: 39137302 DOI: 10.1021/acsinfecdis.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Venom in medicine is well documented in the chronicles of ancient Greece and the Roman Empire and persisted into the Renaissance and even into the modern era. Venoms were not always associated with detrimental consequences. Since ancient times, the curative capacity of venom has been recognized, portraying venom as a metaphor for pharmacy and medicine. Venom proteins and peptides' antimicrobial potential has not undergone systematic exploration despite the huge literature on natural antimicrobials. In light of the escalating challenge of antimicrobial resistance and the diminishing effectiveness of antibiotics, there is a pressing need for innovative antimicrobials capable of effectively addressing illnesses caused by multidrug-resistant microorganisms. This review adds to our understanding of the effectiveness of different venom components against a host of pathogenic microorganisms. The aim is to illuminate the various antimicrobials present in venom and venom peptides, thereby emphasizing the unexplored medicinal potential for antimicrobial properties. We have presented a concise summary of the molecular examination of the venom peptides' functioning processes, as well as the current clinical and preclinical progress of venom antimicrobial peptides.
Collapse
Affiliation(s)
- Ramkamal Samat
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
2
|
Choudhary M, Kumar V, Naik B, Verma A, Saris PEJ, Kumar V, Gupta S. Antifungal metabolites, their novel sources, and targets to combat drug resistance. Front Microbiol 2022; 13:1061603. [PMID: 36532457 PMCID: PMC9755354 DOI: 10.3389/fmicb.2022.1061603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Excessive antibiotic prescriptions as well as their misuse in agriculture are the main causes of antimicrobial resistance which poses a growing threat to public health. It necessitates the search for novel chemicals to combat drug resistance. Since ancient times, naturally occurring medicines have been employed and the enormous variety of bioactive chemicals found in nature has long served as an inspiration for researchers looking for possible therapeutics. Secondary metabolites from microorganisms, particularly those from actinomycetes, have made it incredibly easy to find new molecules. Different actinomycetes species account for more than 70% of naturally generated antibiotics currently used in medicine, and they also produce a variety of secondary metabolites, including pigments, enzymes, and anti-inflammatory compounds. They continue to be a crucial source of fresh chemical diversity and a crucial component of drug discovery. This review summarizes some uncommon sources of antifungal metabolites and highlights the importance of further research on these unusual habitats as a source of novel antimicrobial molecules.
Collapse
Affiliation(s)
- Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Bindu Naik
- Department of Life Sciences (Food Technology & Nutrition), Graphic Era (Deemed to be University), Dehradun, India
| | - Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| |
Collapse
|
3
|
Yacoub T, Rima M, Karam M, Sabatier JM, Fajloun Z. Antimicrobials from Venomous Animals: An Overview. Molecules 2020; 25:molecules25102402. [PMID: 32455792 PMCID: PMC7287856 DOI: 10.3390/molecules25102402] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 01/17/2023] Open
Abstract
The inappropriate or excessive use of antimicrobial agents caused an emerging public health problem due to the resulting resistance developed by microbes. Therefore, there is an urgent need to develop effective antimicrobial strategies relying on natural agents with different mechanisms of action. Nature has been known to offer many bioactive compounds, in the form of animal venoms, algae, and plant extracts that were used for decades in traditional medicine. Animal venoms and secretions have been deeply studied for their wealth in pharmaceutically promising molecules. As such, they were reported to exhibit many biological activities of interest, such as antibacterial, antiviral, anticancer, and anti-inflammatory activities. In this review, we summarize recent findings on the antimicrobial activities of crude animal venoms/secretions, and describe the peptides that are responsible of these activities.
Collapse
Affiliation(s)
- Tania Yacoub
- Department of Biology, University of Balamand, Kalhat, Al-Kurah, P.O. box 100 Tripoli, Lebanon; (T.Y.); (M.K.)
| | - Mohamad Rima
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS U7104, Université de Strasbourg, 67400 Illkirch, France;
| | - Marc Karam
- Department of Biology, University of Balamand, Kalhat, Al-Kurah, P.O. box 100 Tripoli, Lebanon; (T.Y.); (M.K.)
| | - Jean-Marc Sabatier
- Université Aix-Marseille, Institut de NeuroPhysiopathologie, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, 13344-Marseille CEDEX 15, France
- Correspondence: (J.-M.S.); (Z.F.)
| | - Ziad Fajloun
- Faculty of Sciences 3, Lebanese University, Michel Slayman Tripoli Campus, Ras Maska 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Lebanese University, El Mittein Street, 1300 Tripoli, Lebanon
- Correspondence: (J.-M.S.); (Z.F.)
| |
Collapse
|
4
|
Liu M, Wang Y, Liu Y, Ruan R. Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: A review. Food Res Int 2016; 89:63-73. [PMID: 28460959 DOI: 10.1016/j.foodres.2016.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/06/2016] [Accepted: 08/13/2016] [Indexed: 11/15/2022]
Abstract
There is an urgent treat of numerous chronic diseases including heart disease, stroke, cancer, chronic respiratory diseases and diabetes, which have a significant influence on the health of people worldwide. In addition to numerous preventive and therapeutic drug treatments, important advances have been achieved in the identification of bioactive peptides that may contribute to long-term health. Although bioactive peptides with various biological activities received unprecedented attention, as a new source of bioactive peptides, the significant role of bioactive peptides from traditional Chinese medicine and traditional Chinese food has not fully appreciated compared to other bioactive components. Hence, identification and bioactivity assessment of these peptides could benefit the pharmaceutical and food industry. Furthermore, the functional properties of bioactive peptides help to demystify drug properties and health benefits of traditional Chinese medicine and traditional Chinese food. This paper reviews the generation and biofunctional properties of various bioactive peptides derived from traditional Chinese medicine and traditional Chinese food. Mechanisms of digestion, bioavailability of bioactive peptides and interactions between traditional Chinese medicine and traditional Chinese food are also summarized in this review.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| | - Roger Ruan
- Center for Biorefining and Dept. of Bioproducts and Biosystems Engineering, University of Minnesota, Paul 55108, USA
| |
Collapse
|