1
|
Chi MH, Chao J, Ko CY, Huang SS. An Ethnopharmaceutical Study on the Hypolipidemic Formulae in Taiwan Issued by Traditional Chinese Medicine Pharmacies. Front Pharmacol 2022; 13:900693. [PMID: 36188612 PMCID: PMC9520573 DOI: 10.3389/fphar.2022.900693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Globally, approximately one-third of ischemic heart diseases are due to hyperlipidemia, which has been shown to cause various metabolic disorders. This study was aimed to disassemble and analyze hypolipidemic formulae sold by traditional Chinese medicine (TCM) pharmacies. Using commonly used statistical parameters in ethnopharmacology, we identified the core drug combination of the hypolipidemic formulae, thereby exploring the strategy by which the Taiwanese people select hypolipidemic drugs. Most important of all, we preserved the inherited knowledge of TCM. We visited 116 TCM pharmacies in Taiwan and collected 91 TCM formulae. The formulae were mainly disassembled by macroscopical identification, and the medicinal materials with a relative frequency of citation (RFC) >0.2 were defined as commonly used medicinal materials. Subsequently, we sorted the information of medicinal materials recorded in the Pharmacopeia, searched for modern pharmacological research on commonly used medicinal materials using PubMed database, and visualized data based on the statistical results. Finally, the core hypolipidemic medicinal materials used in folk medicine were obtained. Of the 91 TCM formulae collected in this study, 80 traditional Chinese medicinal materials were used, belonging to 43 families, predominantly Lamiaceae. Roots were the most commonly used part as a medicinal material. There were 17 commonly used medicinal materials. Based on medicinal records in Pharmacopeia, most flavors and properties were warm and pungent, the majority traditional effects were “tonifying and replenishing” and “blood-regulating.” Besides, the targeted diseases searching from modern pharmacological studies were diabetes mellitus and dyslipidemia. The core medicinal materials consisted of Astragalus mongholicus Bunge and Crataegus pinnatifida Bunge, and the core formulae were Bu-Yang-Huan-Wu-Tang and Xie-Fu-Zhu-Yu-Tang. In addition, 7 groups of folk misused medicinal materials were found. Although these TCMs have been used for a long period of time, their hypolipidemic mechanisms remain unclear, and further studies are needed to validate their safety and efficacy.
Collapse
Affiliation(s)
- Min-Han Chi
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jung Chao
- Master Program for Food and Drug Safety, Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- *Correspondence: Shyh-Shyun Huang,
| |
Collapse
|
2
|
Li J, Gu H. Paeonol suppresses lipid formation and promotes lipid degradation in adipocytes. Exp Ther Med 2021; 23:78. [PMID: 34938364 PMCID: PMC8688932 DOI: 10.3892/etm.2021.11001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Paeonol can regulate a variety of physiological and pathological processes such as thrombosis, oxidative stress, inflammation and atherosclerosis. However, its potential role and underlying mechanisms in obesity and lipid metabolism remain to be elucidated. In the present study, 3T3-L1 cells were differentiated and collected on days 4, 6 and 8. The expression levels of fatty-acid-binding protein 4 (FABP4) and microRNA (miR)-21 were detected using reverse transcription-quantitative PCR and western blot analyses. Cell viability was assessed using a Cell Counting Kit-8 assay. A miR-21 mimic was constructed and transfected into 3T3-L1 preadipocytes. Adipocyte differentiation was detected using Oil Red O staining. The proteins CD36, glucose transporter 4, peroxisome proliferator-activated receptor γ (PPAR-γ) and adipocyte protein 2 (Ap2) were detected using western blot analysis. The expression levels of FABP4 and miR-21 were increased in differentiated 3T3-L1 cells. Paeonol exhibited no effects on cell activity, whereas it inhibited the expression levels of miR-21 in the 3T3-L1 differentiated adipocytes. Paeonol suppressed the differentiation of 3T3-L1 adipocytes and its effect was partially reversed by the overexpression of miR-21. In addition, paeonol promoted the lipid degradation of 3T3-L1 adipocytes, increased the expression levels of PPAR-γ and Ap2, and suppressed triglyceride synthesis in these cells. These effects were partially reversed by the overexpression of miR-21. In conclusion, the findings of the present study indicated that paeonol may exert protective effects against lipid formation and promote lipid degradation in adipocytes. These data provide evidence of the regulatory effect of paeonol on adipocyte differentiation and highlight its pathological significance.
Collapse
Affiliation(s)
- Ji Li
- Department of Pediatrics, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing 100053, P.R. China
| | - Huan Gu
- Department of Cardiology of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
3
|
Weng G, Duan Y, Zhong Y, Song B, Zheng J, Zhang S, Yin Y, Deng J. Plant Extracts in Obesity: A Role of Gut Microbiota. Front Nutr 2021; 8:727951. [PMID: 34631766 PMCID: PMC8495072 DOI: 10.3389/fnut.2021.727951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity has become one of the most serious chronic diseases threatening human health. Its occurrence and development are closely associated with gut microbiota since the disorders of gut microbiota can promote endotoxin production and induce inflammatory response. Recently, numerous plant extracts have been proven to mitigate lipid dysmetabolism and obesity syndrome by regulating the abundance and composition of gut microbiota. In this review, we summarize the potential roles of different plant extracts including mulberry leaf extract, policosanol, cortex moutan, green tea, honokiol, and capsaicin in regulating obesity via gut microbiota. Based on the current findings, plant extracts may be promising agents for the prevention and treatment of obesity and its related metabolic diseases, and the mechanisms might be associated with gut microbiota.
Collapse
Affiliation(s)
- Guangying Weng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China.,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yehui Duan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yinzhao Zhong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Bo Song
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zheng
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China.,CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Regulation, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Liao J, Xie X, Gao J, Zhang Z, Qu F, Cui H, Cao Y, Han X, Zhao J, Wen W, Wang H. Jian-Gan-Xiao-Zhi Decoction Alleviates Inflammatory Response in Nonalcoholic Fatty Liver Disease Model Rats through Modulating Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5522755. [PMID: 33824675 PMCID: PMC8007356 DOI: 10.1155/2021/5522755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Jian-Gan-Xiao-Zhi decoction (JGXZ), composed of Salvia miltiorrhiza Bunge, Panax notoginseng, Curcuma zedoaria, and other 9 types of herbs, has demonstrated beneficial effects on nonalcoholic fatty liver disease (NAFLD). However, the mechanisms behind JGXZ's impact on NAFLD remain unknown. METHODS In this study, a NAFLD rat model induced by a high-fat diet (HFD) received oral treatment of JGXZ (8 or 16 g crude herb/kg) for 12 weeks. The therapeutic effects of JGXZ on NAFLD model rats were investigated through blood lipid levels and pathological liver changes. 16S rRNA analysis was used to study the changes in gut microbiota after JGXZ treatment. The expressions of occludin and tight junction protein 1 (ZO-1) in the colon were investigated using immunostaining to study the effects of JGXZ on gut permeability. The anti-inflammatory effects of JGXZ were also studied through measuring the levels of IL-1β, IL-6, and TNF-α in the serum and liver. RESULTS JGXZ treatment could decrease body weight and ameliorate dyslipidemia in NAFLD model rats. H&E and Oil Red O staining indicated that JGXZ reduced steatosis and infiltration of inflammatory cells in the liver. 16S rRNA analysis showed that JGXZ impacted the diversity of gut microbiota, decreasing the Firmicutes-to-Bacteroidetes ratio, and increasing the relative abundance of probiotics, such as Alloprevotella, Lactobacillus, and Turicibacter. Gut permeability evaluation found that the expressions of ZO-1 and occludin in the colon were increased after JGXZ treatment. Moreover, JGXZ treatment could decrease the levels of IL-1β, IL-6, and TNF-α in the serum and liver. CONCLUSIONS Our study illustrated that JGXZ could ameliorate NAFLD through modulating gut microbiota, decreasing gut permeability, and alleviating inflammatory response.
Collapse
Affiliation(s)
- Jiabao Liao
- Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, Zhejiang, China
| | - Xuehua Xie
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan, China
| | - Jinmei Gao
- Fujian People's Hospital of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhaiyi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fei Qu
- Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, Zhejiang, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yongjun Cao
- Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, China
| | - Xue Han
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan, China
| | - Jie Zhao
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan, China
| | - Weibo Wen
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan, China
| | - Hongwu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Liang B, Zhang XX, Gu N. Virtual screening and network pharmacology-based synergistic mechanism identification of multiple components contained in Guanxin V against coronary artery disease. BMC Complement Med Ther 2020; 20:345. [PMID: 33187508 PMCID: PMC7664106 DOI: 10.1186/s12906-020-03133-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Guanxin V (GXV), a traditional Chinese medicine (TCM), has been widely used to treat coronary artery disease (CAD) in clinical practice in China. However, research on the active components and underlying mechanisms of GXV in CAD is still scarce. METHODS A virtual screening and network pharmacological approach was utilized for predicting the pharmacological mechanisms of GXV in CAD. The active compounds of GXV based on various TCM-related databases were selected and then the potential targets of these compounds were identified. Then, after the CAD targets were built through nine databases, a PPI network was constructed based on the matching GXV and CAD potential targets, and the hub targets were screened by MCODE. Moreover, Metascape was applied to GO and KEGG functional enrichment. Finally, HPLC fingerprints of GXV were established. RESULTS A total of 119 active components and 121 potential targets shared between CAD and GXV were obtained. The results of functional enrichment indicated that several GO biological processes and KEGG pathways of GXV mostly participated in the therapeutic mechanisms. Furthermore, 7 hub MCODEs of GXV were collected as potential targets, implying the complex effects of GXV-mediated protection against CAD. Six specific chemicals were identified. CONCLUSION GXV could be employed for CAD through molecular mechanisms, involving complex interactions between multiple compounds and targets, as predicted by virtual screening and network pharmacology. Our study provides a new TCM for the treatment of CAD and deepens the understanding of the molecular mechanisms of GXV against CAD.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
6
|
Hegazy MA, Mogawer SM, Alnaggar ARLR, Ghoniem OA, Abdel Samie RM. Serum LPS and CD163 Biomarkers Confirming the Role of Gut Dysbiosis in Overweight Patients with NASH. Diabetes Metab Syndr Obes 2020; 13:3861-3872. [PMID: 33116732 PMCID: PMC7585799 DOI: 10.2147/dmso.s249949] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gut-microbiota alterations and bacterial translocation might attribute to hepatic inflammation. Lipopolysaccharide stimulates toll-like receptor 4 leading to the activation of Kupffer cells which express the surface receptor, CD 163. OBJECTIVE To assess the levels of CD 163 and LPS in overweight and obese patients with different degrees of NAFLD as confirmed by liver biopsy (NAS score). METHODS This is an observational case-control study. Sixty overweight and obese patients with NAFLD and 40 healthy controls were enrolled in the study. Liver biopsy was obtained from all participants with NAFLD. LPS and CD 163 levels were assessed using ELISA. RESULTS The mean LPS and CD163 levels were significantly higher in patients with NAFLD when compared with healthy controls (p-value <0.001, p-value <0.001, respectively). LPS and CD163 levels were the lowest in Non-NASH (13.17 ± 3.34, 5.61 ± 2.35 ng/mL, respectively) and the highest in NASH (58.61 3± 3.81, 18.11 ± 6.84, respectively) (p-value <0.001, p-value <0.001, respectively). Statistically significant correlation was found between the levels of LPS and CD163 and NAS score (p-value <0.001, p-value < 0.001, respectively), steatosis grade (p-value <0.001, p-value <0.001, respectively), degree of inflammation (p-value 0.017, p-value <0.001, respectively) and ballooning (r= 0.663, p-value <0.001, r= 0.558, p-value <0.001, respectively). In ROC analysis, both sCD163 and LPS had high sensitivity and specificity in diagnosing NAFLD. CD163 and LPS had the high sensitivity and accuracy in discriminating NASH from Non-NASH (p-value <0.0001 in both). Moreover, the mean serum levels of LPS and sCD163 correlated positively and significantly with the BMI (r=0.329, p value<0.01; r=0.477. p value <0.001, respectively). CONCLUSION sCD163 and LPS can be used as non-invasive tools for diagnosis and grading of NAFLD severity in overweight and obese patients, thus confirming the role of dysbiosis in fat deposition and inflammation and suggesting the potential benefits of gut-microbiota-targeted therapies in restoring the gut homeostasis.
Collapse
Affiliation(s)
- Mona A Hegazy
- Internal Medicine Department, Kasr Alainy Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherif M Mogawer
- Internal Medicine Department, Kasr Alainy Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | - Rasha M Abdel Samie
- Internal Medicine Department, Kasr Alainy Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy. Nutrients 2017; 9:nu9101124. [PMID: 29035308 PMCID: PMC5691740 DOI: 10.3390/nu9101124] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota plays critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes(T2D), and insulin resistance(IR), highlighting the potential of gut microbiota-targeted therapies in these diseases. There are various ways that gut microbiota can be manipulated, including through use of probiotics, prebiotics, synbiotics, antibiotics, and some active components from herbal medicines. In this review, we review the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies for NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future.
Collapse
|