1
|
Miatmoko A, Octavia RT, Araki T, Annoura T, Sari R. Advancing liposome technology for innovative strategies against malaria. Saudi Pharm J 2024; 32:102085. [PMID: 38690211 PMCID: PMC11059525 DOI: 10.1016/j.jsps.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
This review discusses the potential of liposomes as drug delivery systems for antimalarial therapies. Malaria continues to be a significant cause of mortality and morbidity, particularly among children and pregnant women. Drug resistance due to patient non-compliance and troublesome side effects remains a significant challenge in antimalarial treatment. Liposomes, as targeted and efficient drug carriers, have garnered attention owing to their ability to address these issues. Liposomes encapsulate hydrophilic and/or hydrophobic drugs, thus providing comprehensive and suitable therapeutic drug delivery. Moreover, the potential of passive and active drug delivery enables drug concentration in specific target tissues while reducing adverse effects. However, successful liposome formulation is influenced by various factors, including drug physicochemical characteristics and physiological barriers encountered during drug delivery. To overcome these challenges, researchers have explored modifications in liposome nanocarriers to achieve efficient drug loading, controlled release, and system stability. Computational approaches have also been adopted to predict liposome system stability, membrane integrity, and drug-liposome interactions, improving formulation development efficiency. By leveraging computational methods, optimizing liposomal drug delivery systems holds promise for enhancing treatment efficacy and minimizing side effects in malaria therapy. This review consolidates the current understanding and highlights the potential of liposome strategies against malaria.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, 2 Floor Institute of Tropical Disease Building, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
- Nanotechnology and Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Rifda Tarimi Octavia
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Tamasa Araki
- Department of Parasitology, National Institute of Infectious Diseases (NIID), 1-23-1 Toyama, Shinju-ku, Tokyo 162-8640, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases (NIID), 1-23-1 Toyama, Shinju-ku, Tokyo 162-8640, Japan
| | - Retno Sari
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
2
|
Adegboro AG, Afolabi IS. Molecular mechanisms of mitochondria-mediated ferroptosis: a potential target for antimalarial interventions. Front Cell Dev Biol 2024; 12:1374735. [PMID: 38660623 PMCID: PMC11039840 DOI: 10.3389/fcell.2024.1374735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death characterized by glutathione (GSH) depletion, glutathione peroxidase 4 (GPX4) inactivation, and the build-up of lipotoxic reactive species. Ferroptosis-targeted induction is a promising therapeutic approach for addressing antimalarial drug resistance. In addition to being the primary source of intracellular energy supply and reactive oxygen species (ROS) generation, mitochondria actively participate in diverse forms of regulated cell death, including ferroptosis. Altered mitochondrial morphology and functionality are attributed to ferroptosis. Diverse mitochondria-related proteins and metabolic activities have been implicated in fine-tuning the action of ferroptosis inducers. Herein, we review recent progress in this evolving field, elucidating the numerous mechanisms by which mitochondria regulate ferroptosis and giving an insight into the role of the organelle in ferroptosis. Additionally, we present an overview of how mitochondria contribute to ferroptosis in malaria. Furthermore, we attempt to shed light on an inclusive perspective on how targeting malaria parasites' mitochondrion and attacking redox homeostasis is anticipated to induce ferroptosis-mediated antiparasitic effects.
Collapse
Affiliation(s)
- Adegbolagun Grace Adegboro
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Nigeria
| | - Israel Sunmola Afolabi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
| |
Collapse
|
3
|
Avalos-Padilla Y, Fernàndez-Busquets X. Nanotherapeutics against malaria: A decade of advancements in experimental models. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1943. [PMID: 38426407 DOI: 10.1002/wnan.1943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/01/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Malaria, caused by different species of protists of the genus Plasmodium, remains among the most common causes of death due to parasitic diseases worldwide, mainly for children aged under 5. One of the main obstacles to malaria eradication is the speed with which the pathogen evolves resistance to the drug schemes developed against it. For this reason, it remains urgent to find innovative therapeutic strategies offering sufficient specificity against the parasite to minimize resistance evolution and drug side effects. In this context, nanotechnology-based approaches are now being explored for their use as antimalarial drug delivery platforms due to the wide range of advantages and tuneable properties that they offer. However, major challenges remain to be addressed to provide a cost-efficient and targeted therapeutic strategy contributing to malaria eradication. The present work contains a systematic review of nanotechnology-based antimalarial drug delivery systems generated during the last 10 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Bernitsa S, Dayan R, Stephanou A, Tzvetanova ID, Patrikios IS. Natural biomolecules and derivatives as anticancer immunomodulatory agents. Front Immunol 2023; 13:1070367. [PMID: 36700235 PMCID: PMC9868674 DOI: 10.3389/fimmu.2022.1070367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Despite advancements in chemotherapy, the issue of resistance and non-responsiveness to many chemotherapeutic drugs that are currently in clinical use still remains. Recently, cancer immunotherapy has gathered attention as a novel treatment against select cancers. Immunomodulation is also emerging as an effective strategy to improve efficacy. Natural phytochemicals, with known anticancer properties, been reported to mediate their effects by modulating both traditional cancer pathways and immunity. The mechanism of phytochemical mediated-immunomodulatory activity may be attributed to the remodeling of the tumor immunosuppressive microenvironment and the sensitization of the immune system. This allows for improved recognition and targeting of cancer cells by the immune system and synergy with chemotherapeutics. In this review, we will discuss several well-known plant-derived biomolecules and examine their potential as immunomodulators, and therefore, as novel immunotherapies for cancer treatment.
Collapse
Affiliation(s)
| | - Rotem Dayan
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | | | | | | |
Collapse
|
5
|
Messaï A, Redouane-Salah S. Dietary use of Artemisia herba alba Asso as a potential coccidiostat against cæcal coccidiosis: haematological parameter variations. Trop Anim Health Prod 2021; 54:28. [PMID: 34961903 DOI: 10.1007/s11250-021-03038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
This study consists of the evaluation of the anticoccidial effect of Artemisia herba-alba Asso during experimental coccidial infection. Four groups of 30 broiler chickens were formed: the negative control (G1), the positive control (G2), the infected Monensin-treated group (G3), and the infected Artemisia-treated group (G4). Each infected bird received orally 105 sporulated oocysts of Eimeria tenella. No mortality was recorded in both G1 and G4. Haematocrit levels showed great variations from the 7th day post-infection, especially in G2 (20.87% ± 5.77). By day 10 P-I, haematocrit recovery was rapid particularly in G4 (28.07% ± 1.50). Haemoglobin concentration also decreased significantly (p < 0.05) in all infected groups by the 7th day P-I. The reduction was very marked, but not statistically significant, in G2 (6.47 g/dL ± 1.67) against (10.53 g/dL ± 0.25) in G1. It was less marked in G4 (8.05 g/dL ± 1.56). Results show the protective effect of A. herba-alba Asso by improving the lesion score and the haematological parameters affected during coccidian infection.
Collapse
Affiliation(s)
- Ahmed Messaï
- Department of Agricultural Sciences, University Mohamed-Khider of Biskra, PO Box 145 RP, 07000, Biskra, Algeria. .,PIARA (Promotion of Innovation, Agriculture in Arid Regions) Research Laboratory, University Mohamed-Khider of Biskra, Biskra, Algeria.
| | - Sara Redouane-Salah
- PIARA (Promotion of Innovation, Agriculture in Arid Regions) Research Laboratory, University Mohamed-Khider of Biskra, Biskra, Algeria.,Department of Natural and Life Sciences, University Mohamed-Khider of Biskra, PO Box 145 RP, 07000, Biskra, Algeria
| |
Collapse
|
6
|
Ochora DO, Kakudidi EK, Namukobe J, Ipulet P, Wakoli DM, Okore W, Mwakio EW, Yeda RA, Cheruiyot AC, Juma DW, Andagalu B, Roth AL, Ogutu BR, Yenesew A, Akala HM. Synergism in Antiplasmodial Activities of Artemether and Lumefantrine in Combination with Securidaca longipedunculata Fresen (Polygalaceae). PLANTS (BASEL, SWITZERLAND) 2021; 11:47. [PMID: 35009051 PMCID: PMC8747340 DOI: 10.3390/plants11010047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
Malaria is the most lethal parasitic disease in the world. The frequent emergence of resistance by malaria parasites to any drug is the hallmark of sustained malaria burden. Since the deployment of artemisinin-based combination therapies (ACTs) it is clear that for a sustained fight against malaria, drug combination is one of the strategies toward malaria elimination. In Sub-Saharan Africa where malaria prevalence is the highest, the identification of plants with a novel mechanism of action that is devoid of cross-resistance is a feasible strategy in drug combination therapy. Thus, artemether and lumefantrine were separately combined and tested with extracts of Securidaca longipedunculata, a plant widely used to treat malaria, at fixed extract-drug ratios of 4:1, 3:1, 1:1, 1:2, 1:3, and 1:4. These combinations were tested for antiplasmodial activity against three strains of Plasmodium falciparum (W2, D6, and DD2), and seven field isolates that were characterized for molecular and ex vivo drug resistance profiles. The mean sum of fifty-percent fractional inhibition concentration (FIC50) of each combination and singly was determined. Synergism was observed across all fixed doses when roots extracts were combined with artemether against D6 strain (FIC50 0.403 ± 0.068) and stems extract combined with lumefantrine against DD2 strain (FIC50 0.376 ± 0.096) as well as field isolates (FIC50 0.656 ± 0.067). Similarly, synergism was observed in all ratios when leaves extract were combined with lumefantrine against W2 strain (FIC50 0.456 ± 0.165). Synergism was observed in most combinations indicating the potential use of S. longipedunculata in combination with artemether and lumefantrine in combating resistance.
Collapse
Affiliation(s)
- Douglas O. Ochora
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062-10207, Uganda; (E.K.K.); (P.I.)
| | - Esezah K. Kakudidi
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062-10207, Uganda; (E.K.K.); (P.I.)
| | - Jane Namukobe
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062-10207, Uganda;
| | - Perpetua Ipulet
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala P.O. Box 7062-10207, Uganda; (E.K.K.); (P.I.)
| | - Dancan M. Wakoli
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro P.O. Box 536-20115, Kenya;
- United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kisumu P.O. Box 54-40100, Kenya;
| | - Winnie Okore
- United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kisumu P.O. Box 54-40100, Kenya;
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Edwin W. Mwakio
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Redempthah A. Yeda
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Agnes C. Cheruiyot
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Dennis W. Juma
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Ben Andagalu
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Amanda L. Roth
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| | - Bernhards R. Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute (KEMRI), Kisumu P.O. Box 1578-40100, Kenya;
| | - Abiy Yenesew
- Department of Chemistry, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Hoseah M. Akala
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno P.O. Box Private Bag-40105, Kenya; (E.W.M.); (R.A.Y.); (A.C.C.); (D.W.J.); (B.A.); (A.L.R.)
| |
Collapse
|
7
|
Xiong Y, Huang J. Anti-malarial drug: the emerging role of artemisinin and its derivatives in liver disease treatment. Chin Med 2021; 16:80. [PMID: 34407830 PMCID: PMC8371597 DOI: 10.1186/s13020-021-00489-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Artemisinin and its derivatives belong to a family of drugs approved for the treatment of malaria with known clinical safety and efficacy. In addition to its anti-malarial effect, artemisinin displays anti-viral, anti-inflammatory, and anti-cancer effects in vivo and in vitro. Recently, much attention has been paid to the therapeutic role of artemisinin in liver diseases. Several studies suggest that artemisinin and its derivatives can protect the liver through different mechanisms, such as those pertaining to inflammation, proliferation, invasion, metastasis, and induction of apoptosis and autophagy. In this review, we provide a comprehensive discussion of the underlying molecular mechanisms and signaling pathways of artemisinin and its derivatives in treating liver diseases. Further pharmacological research will aid in determining whether artemisinin and its derivatives may serve as promising medicines for the treatment of liver diseases in the future. ![]()
Collapse
Affiliation(s)
- Ye Xiong
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jianrong Huang
- The Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
9
|
Abate G, Zhang L, Pucci M, Morbini G, Mac Sweeney E, Maccarinelli G, Ribaudo G, Gianoncelli A, Uberti D, Memo M, Lucini L, Mastinu A. Phytochemical Analysis and Anti-Inflammatory Activity of Different Ethanolic Phyto-Extracts of Artemisia annua L. Biomolecules 2021; 11:biom11070975. [PMID: 34356599 PMCID: PMC8301839 DOI: 10.3390/biom11070975] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Artemisia annua L. (AA) has shown for many centuries important therapeutic virtues associated with the presence of artemisinin (ART). The aim of this study was to identify and quantify ART and other secondary metabolites in ethanolic extracts of AA and evaluate the biological activity in the presence of an inflammatory stimulus. In this work, after the extraction of the aerial parts of AA with different concentrations of ethanol, ART was quantified by HPLC and HPLC-MS. In addition, anthocyanins, flavanols, flavanones, flavonols, lignans, low-molecular-weight phenolics, phenolic acids, stilbenes, and terpenes were identified and semi-quantitatively determined by UHPLC-QTOF-MS untargeted metabolomics. Finally, the viability of human neuroblastoma cells (SH-SY5Y) was evaluated in the presence of the different ethanolic extracts and in the presence of lipopolysaccharide (LPS). The results show that ART is more concentrated in AA samples extracted with 90% ethanol. Regarding the other metabolites, only the anthocyanins are more concentrated in the samples extracted with 90% ethanol. Finally, ART and all AA samples showed a protective action towards the pro-inflammatory stimulus of LPS. In particular, the anti-inflammatory effect of the leaf extract of AA with 90% ethanol was also confirmed at the molecular level since a reduction in TNF-α mRNA gene expression was observed in SH-SY5Y treated with LPS.
Collapse
Affiliation(s)
- Giulia Abate
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Mariachiara Pucci
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Giulia Morbini
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Eileen Mac Sweeney
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
- Correspondence: (L.L.); (A.M.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
- Correspondence: (L.L.); (A.M.)
| |
Collapse
|
10
|
Christensen SB. Natural Products That Changed Society. Biomedicines 2021; 9:biomedicines9050472. [PMID: 33925870 PMCID: PMC8146924 DOI: 10.3390/biomedicines9050472] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022] Open
Abstract
Until the end of the 19th century all drugs were natural products or minerals. During the 19th century chemists succeeded in isolating pure natural products such as quinine, morphine, codeine and other compounds with beneficial effects. Pure compounds enabled accurate dosing to achieve serum levels within the pharmacological window and reproducible clinical effects. During the 20th and the 21st century synthetic compounds became the major source of drugs. In spite of the impressive results achieved within the art of synthetic chemistry, natural products or modified natural products still constitute almost half of drugs used for treatment of cancer and diseases like malaria, onchocerciasis and lymphatic filariasis caused by parasites. A turning point in the fight against the devastating burden of malaria was obtained in the 17th century by the discovery that bark from trees belonging to the genus Cinchona could be used for treatment with varying success. However isolation and use of the active principle, quinine, in 1820, afforded a breakthrough in the treatment. In the 20th century the synthetic drug chloroquine severely reduced the burden of malaria. However, resistance made this drug obsolete. Subsequently artemisinin isolated from traditional Chinese medicine turned out to be an efficient antimalarial drug overcoming the problem of chloroquine resistance for a while. The use of synthetic analogues such as chloroquine or semisynthetic drugs such as artemether or artesunate further improved the possibilities for healing malaria. Onchocerciasis (river blindness) made life in large parts of Africa and South America miserable. The discovery of the healing effects of the macrocyclic lactone ivermectin enabled control and partly elimination of the disease by annual mass distribution of the drug. Also in the case of ivermectin improved semisynthetic derivatives have found their way into the clinic. Ivermectin also is an efficient drug for treatment of lymphatic filariasis. The serendipitous discovery of the ability of the spindle toxins to control the growth of fast proliferating cancer cells armed physicians with a new efficient tool for treatment of some cancer diseases. These possibilities have been elaborated through preparation of semisynthetic analogues. Today vincristine and vinblastine and semisynthetic analogues are powerful weapons against cancer diseases.
Collapse
Affiliation(s)
- Søren Brøgger Christensen
- The Museum of Natural Medicine & The Pharmacognostic Collection, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Tunstall T, Portelli S, Phelan J, Clark TG, Ascher DB, Furnham N. Combining structure and genomics to understand antimicrobial resistance. Comput Struct Biotechnol J 2020; 18:3377-3394. [PMID: 33294134 PMCID: PMC7683289 DOI: 10.1016/j.csbj.2020.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobials against bacterial, viral and parasitic pathogens have transformed human and animal health. Nevertheless, their widespread use (and misuse) has led to the emergence of antimicrobial resistance (AMR) which poses a potentially catastrophic threat to public health and animal husbandry. There are several routes, both intrinsic and acquired, by which AMR can develop. One major route is through non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions. Large scale genomic studies using high-throughput sequencing data have provided powerful new ways to rapidly detect and respond to such genetic mutations linked to AMR. However, these studies are limited in their mechanistic insight. Computational tools can rapidly and inexpensively evaluate the effect of mutations on protein function and evolution. Subsequent insights can then inform experimental studies, and direct existing or new computational methods. Here we review a range of sequence and structure-based computational tools, focussing on tools successfully used to investigate mutational effect on drug targets in clinically important pathogens, particularly Mycobacterium tuberculosis. Combining genomic results with the biophysical effects of mutations can help reveal the molecular basis and consequences of resistance development. Furthermore, we summarise how the application of such a mechanistic understanding of drug resistance can be applied to limit the impact of AMR.
Collapse
Affiliation(s)
- Tanushree Tunstall
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Stephanie Portelli
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Australia
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia
| | - Jody Phelan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - David B. Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Australia
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
12
|
Golenser J, Salaymeh N, Higazi AA, Alyan M, Daif M, Dzikowski R, Domb AJ. Treatment of Experimental Cerebral Malaria by Slow Release of Artemisone From Injectable Pasty Formulation. Front Pharmacol 2020; 11:846. [PMID: 32595499 PMCID: PMC7303303 DOI: 10.3389/fphar.2020.00846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/22/2020] [Indexed: 12/26/2022] Open
Abstract
Malaria caused by Plasmodium falciparum causes numerous cases of morbidity with about 400,000 deaths yearly owing, mainly, to inflammation leading to cerebral malaria (CM). CM conventionally is treated by repetitive administration of anti-plasmodial drugs and supportive non-specific drugs, for about a week. A mouse model of CM caused by Plasmodium berghei ANKA, in which brain and systemic clinical pathologies occur followed by sudden death within about a week, was used to study the effect of artemisone, a relatively new artemisinin, within an injectable pasty polymer formulated for its controlled release. The parasites were exposed to the drug over several days at a non-toxic concentrations for the mice but high enough to affect the parasites. Artemisone was also tested in cultures of bacteria, cancer cells and P. falciparum to evaluate the specificity and suitability of these cells for examining the release of artemisone from its carrier. Cultures of P. falciparum were the most suitable. Artemisone released from subcutaneous injected poly(sebacic acid-ricinoleic acid) (PSARA) pasty polymer, reduced parasitemias in infected mice, prolonged survival and prevented death in most of the infected mice. Successful prophylactic treatment before infection proved that there was a slow release of the drug for about a week, which contrasts with the three hour half-life that occurs after injection of just the drug. Treatment with artemisone within the polymer, even at a late stage of the disease, helped to prevent or, at least, delay accompanying severe symptoms. In some cases, treatment prevented death of CM and the mice died later of anemia. Postponing the severe clinical symptoms is also beneficial in cases of human malaria, giving more time for an appropriate diagnosis and treatment before severe symptoms appear. The method presented here may also be useful for combination therapy of anti-plasmodial and immunomodulatory drugs.
Collapse
Affiliation(s)
- Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, the Hebrew University (HU), Jerusalem, Israel
| | - Nadeen Salaymeh
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, the Hebrew University (HU), Jerusalem, Israel
| | | | - Mohammed Alyan
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, the Hebrew University (HU), Jerusalem, Israel
- Faculty of Medicine, School of Pharmacy, Institute of Drug Research, HU, Jerusalem, Israel
| | - Mahran Daif
- Faculty of Medicine, School of Pharmacy, Institute of Drug Research, HU, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, Faculty of Medicine, the Hebrew University (HU), Jerusalem, Israel
| | - Abraham J. Domb
- Faculty of Medicine, School of Pharmacy, Institute of Drug Research, HU, Jerusalem, Israel
| |
Collapse
|
13
|
Liu Y, Yang Y, Lei Y, Yang L, Zhang X, Yuan J, Lei Z. Effects of dihydroartemisinin on the gut microbiome of mice. Mol Med Rep 2020; 22:707-714. [PMID: 32468008 PMCID: PMC7339414 DOI: 10.3892/mmr.2020.11165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin, which has been found to exhibit a broad range of biological activities, excluding antimalarial effects; however its effects on the gut microbiota remain poorly understood. The present study aimed to investigate the effects of DHA on the gut microbiome in mice and to determine its potential biological and pharmaceutical activities through its alteration of the gut microbiota. Serum glucose, triglyceride (TG), total cholesterol, lipopolysaccharide, high density lipoprotein‑cholesterol, low density lipoprotein‑cholesterol, alanine aminotransferase and aspartate aminotransferase levels in mice treated with DHA were analyzed using the corresponding detection kits. In addition, hematoxylin and eosin staining was performed to determine the pathological effects of DHA on the liver, kidney and intestinal tissues of mice, and the effects of DHA on the gut microbiome were analyzed using 16S ribosomal (r)DNA gene analysis. The results demonstrated that the TG serum levels of mice treated with DHA were significantly decreased compared with the control group. Furthermore, 16S rDNA gene analysis demonstrated that the bacterial diversity of mice treated with DHA was enriched compared with the control group. The DHA group exhibited increased numbers of Firmicutes and Saccharibacteria, and decreased Deferribacteres and Actinobacteria compared with the control group at the phylum level. Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis also revealed that the signaling pathways associated with 'Energy metabolism' and 'Nucleotide metabolism' were upregulated, whereas the signaling pathways associated with 'Infectious diseases and 'Neurodegenerative diseases' were downregulated in the DHA group compared with the control group. In conclusion, the findings of the present study indicated that DHA may significantly decrease the serum TG levels and alter the gut microbiota, which suggested its potential to be used for the treatment of hyperlipidemia, inflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanyan Liu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Yuting Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Lanxiang Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Xueying Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Jian Yuan
- Department of Pathology and Guangdong Key Laboratory for Bioactive Drugs Research, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Zili Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|