1
|
Xiang Y, Wu J, Qin H. Advances in hepatocellular carcinoma drug resistance models. Front Med (Lausanne) 2024; 11:1437226. [PMID: 39144662 PMCID: PMC11322137 DOI: 10.3389/fmed.2024.1437226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Surgery has been the major treatment method for HCC owing to HCC's poor sensitivity to radiotherapy and chemotherapy. However, its effectiveness is limited by postoperative tumour recurrence and metastasis. Systemic therapy is applied to eliminate postoperative residual tumour cells and improve the survival of patients with advanced HCC. Recently, the emergence of various novel targeted and immunotherapeutic drugs has significantly improved the prognosis of advanced HCC. However, targeted and immunological therapies may not always produce complete and long-lasting anti-tumour responses because of tumour heterogeneity and drug resistance. Traditional and patient-derived cell lines or animal models are used to investigate the drug resistance mechanisms of HCC and identify drugs that could reverse the resistance. This study comprehensively reviewed the established methods and applications of in-vivo and in-vitro HCC drug resistance models to further understand the resistance mechanisms in HCC treatment and provide a model basis for possible individualised therapy.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Jun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Zhang X, Liu G, Sang Z, Jin X, Wang Y, Guo Q, Zhou Y, Song X. Pharmacokinetics, tissue distribution, and excretion study of GL-V9 and its glucuronide metabolite 5-O-glucuronide GL-V9 in Sprague-Dawley rats. Biomed Chromatogr 2024; 38:e5828. [PMID: 38321647 DOI: 10.1002/bmc.5828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
The objective of this study is to explore the pharmacokinetics, tissue distribution, and excretion patterns of GL-V9 and its glucuronide metabolite, 5-O-glucuronide GL-V9, following the administration of GL-V9 to Sprague-Dawley (SD) rats. In this research, we developed and validated rapid, sensitive, and selective ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods for quantifying GL-V9 and 5-O-glucuronide GL-V9 in various biological samples, including SD rat plasma, tissue homogenate, bile, urine, and feces. Quantification of GL-V9 and 5-O-glucuronide GL-V9 in plasma, tissue homogenate, bile, urine, and feces was performed using the validated LC-MS/MS methods. The bioavailability of GL-V9 in SD rats ranged from 6.23% to 7.08%, and both GL-V9 and 5-O-glucuronide GL-V9 exhibited wide distribution and rapid elimination from tissues. The primary distribution tissues for GL-V9 and 5-O-glucuronide GL-V9 in rats were the duodenum, liver, and lung. GL-V9 was predominantly excreted in urine, while 5-O-glucuronide GL-V9 was primarily excreted in bile. GL-V9 exhibited easy absorption and rapid conversion to its glucuronide metabolite, 5-O-glucuronide GL-V9, following administration.
Collapse
Affiliation(s)
- Xuefeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
- TriApex Laboratories Co., Ltd, Nanjing, People's Republic of China
| | - Guanlan Liu
- TriApex Laboratories Co., Ltd, Nanjing, People's Republic of China
| | - Zechun Sang
- TriApex Laboratories Co., Ltd, Nanjing, People's Republic of China
| | - Xiaoxin Jin
- Fushun No.12 Senior High School, Fushun, People's Republic of China
| | - Yan Wang
- Fushun No.2 Senior High School, Fushun, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiuming Song
- TriApex (Nanjing) Clinical Research Co., LTD, TriApex Laboratories Co., Ltd, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Qiang R, Li Y, Dai X, Lv W. NLRP3 inflammasome in digestive diseases: From mechanism to therapy. Front Immunol 2022; 13:978190. [PMID: 36389791 PMCID: PMC9644028 DOI: 10.3389/fimmu.2022.978190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 09/05/2023] Open
Abstract
Digestive system diseases remain a formidable challenge to human health. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex and is involved in a wide range of digestive diseases as intracellular innate immune sensors. It has emerged as a research hotspot in recent years. In this context, we provide a comprehensive review of NLRP3 inflammasome priming and activation in the pathogenesis of digestive diseases, including clinical and preclinical studies. Moreover, the scientific evidence of small-molecule chemical drugs, biologics, and phytochemicals, which acts on different steps of the NLRP3 inflammasome, is reviewed. Above all, deep interrogation of the NLRP3 inflammasome is a better insight of the pathomechanism of digestive diseases. We believe that the NLRP3 inflammasome will hold promise as a novel valuable target and research direction for treating digestive disorders.
Collapse
Affiliation(s)
- Rui Qiang
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | - Yanbo Li
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | | | - Wenliang Lv
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| |
Collapse
|
4
|
Maleki Dana P, Sadoughi F, Asemi Z, Yousefi B. The role of polyphenols in overcoming cancer drug resistance: a comprehensive review. Cell Mol Biol Lett 2022; 27:1. [PMID: 34979906 PMCID: PMC8903685 DOI: 10.1186/s11658-021-00301-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Chemotherapeutic drugs are used to treat advanced stages of cancer or following surgery. However, cancers often develop resistance against drugs, leading to failure of treatment and recurrence of the disease. Polyphenols are a family of organic compounds with more than 10,000 members which have a three-membered flavan ring system in common. These natural compounds are known for their beneficial properties, such as free radical scavenging, decreasing oxidative stress, and modulating inflammation. Herein, we discuss the role of polyphenols (mainly curcumin, resveratrol, and epigallocatechin gallate [EGCG]) in different aspects of cancer drug resistance. Increasing drug uptake by tumor cells, decreasing drug metabolism by enzymes (e.g. cytochromes and glutathione-S-transferases), and reducing drug efflux are some of the mechanisms by which polyphenols increase the sensitivity of cancer cells to chemotherapeutic agents. Polyphenols also affect other targets for overcoming chemoresistance in cancer cells, including cell death (i.e. autophagy and apoptosis), EMT, ROS, DNA repair processes, cancer stem cells, and epigenetics (e.g. miRNAs).
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Feng X, Ma G, Shi H, Wang Y, Chao X. An Integrative Serum Pharmacology-Based Approach to Study the Anti-Tumor Activity of B. paniculatum Aqueous Bulb Extract on the Human Hepatocellular Carcinoma Cell Line BEL-7404. Front Pharmacol 2020; 11:01261. [PMID: 33123002 PMCID: PMC7569155 DOI: 10.3389/fphar.2020.01261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
The herb Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae family), also known as Tu-Bei-Mu (TBM) in Chinese, has shown curative effects to treat several types of cancer as an adjunctive therapy. Thereby we intend to find its effect on the human hepatocellular carcinoma (HCC) and to understand the pharmacological mechanism behind it. In this study, an integrative serum pharmacology-based approach linking serum pharmacology and bioinformatics prediction was employed. Firstly, we used the serum taken introgastrically from the rats dministered by TBM aqueous bulb extract to culture the HCC cell line BEL-7404 and detect its anti-tumor effects. Secondly, the TBM putative targets were predicted using the ETCM database and known therapeutic targets of NPC were collected from the OMIM database. Then, a TBM-HCC putative targets network was constructed using the DAVID and STRING databases. Thirdly, key gene targets were obtained based on topological analysis and pathway enrichment analysis. The expression of 4 representative key targets were validated by Western blotting. As a result, 36 TBM targets and 26 known therapeutic targets of HCC were identified. These key targets were found to be frequently involved in 13 KEGG pathways and 4 biological processes. The expression of four representative key targets: TP53, CASP3, BCL2 and BAX further supports the suppression of TBM on HCC. In general, our study shows the curative effects of TBM against HCC. By using this integrative approach, we may find novel potential therapeutic targets to suppress HCC using TBM as an adjunctive therapy. And it could also help us understand the mechanism of HCC treatments in response to TBM.
Collapse
Affiliation(s)
- Xuesong Feng
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Guangyuan Ma
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hailong Shi
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuewen Wang
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xu Chao
- Basic Medical Academy, Shaanxi University of Chinese Medicine, Xianyang, China.,The Research Department, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|