1
|
Guo E, Yuan M, Xu L, Ren Q, Wang Z, Li Z, Wu Z, Liu W, Zhao Y, Feng F, Xu J. Identification of three key enzymes involved in the biosynthesis of tetracyclic oxindole alkaloids in Uncaria rhynchophylla. Bioorg Chem 2023; 136:106545. [PMID: 37087849 DOI: 10.1016/j.bioorg.2023.106545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Tetracyclic oxindole alkaloids (TOAs), main active ingredients of Uncaria rhynchophylla (UR), has inspired the interest of pharmacologists and chemists because of its great potential in the treatment of the diseases of the nervous system and cardiovascular system and its special spirooxindole scaffold, but the biosynthetic pathway of this compounds is still unknown. In this work, the metabolomics and transcriptomics of hook, leaf and stem of UR were analyzed, and 31 alkaloids and 47,423 unigenes were identified, as well as the relative contents of these alkaloids were evaluated. Based on the above results and literatures, a proposal biosynthetic pathway for TOAs was devised. Furthermore, three unigenes were suggested mediating the biosynthesis of TOAs through the integrated analysis of metabolomics and transcriptomics, and three enzymes, tryptophan decarboxylase, strictosidine synthase and strictosidine-β-d-glucosidase, were identified as important catalytic enzymes for the synthesis of tryptamine, strictosidine (7) and 4,21-dehydrogeissochizine, respectively, which are considered as the important precursors of TOAs.
Collapse
Affiliation(s)
- Eryan Guo
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengting Yuan
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lijun Xu
- Tibetan University of Tibetan Medicine, Lhasa 850007, China
| | - Qinjia Ren
- Tibetan University of Tibetan Medicine, Lhasa 850007, China
| | - Zihan Wang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zixin Li
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zongyao Wu
- Tibetan University of Tibetan Medicine, Lhasa 850007, China
| | - Wenyuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Feng Feng
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Jian Xu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Tibetan University of Tibetan Medicine, Lhasa 850007, China.
| |
Collapse
|
2
|
Liu J, Han L, Li G, Zhang A, Liu X, Zhao M. Transcriptome and metabolome profiling of the medicinal plant Veratrum mengtzeanum reveal key components of the alkaloid biosynthesis. Front Genet 2023; 14:1023433. [PMID: 36741317 PMCID: PMC9895797 DOI: 10.3389/fgene.2023.1023433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Veratrum mengtzeanum is the main ingredient for Chinese folk medicine known as "Pimacao" due to its unique alkaloids. A diverse class of plant-specific metabolites having key pharmacological activities. There are limited studies on alkaloid synthesis and its metabolic pathways in plants. To elucidate the alkaloid pathway and identify novel biosynthetic enzymes and compounds in V. mengtzeanum, transcriptome and metabolome profiling has been conducted in leaves and roots. The transcriptome of V. mengtzeanum leaves and roots yielded 190,161 unigenes, of which 33,942 genes expressed differentially (DEGs) in both tissues. Three enriched regulatory pathways (isoquinoline alkaloid biosynthesis, indole alkaloid biosynthesis and tropane, piperidine and pyridine alkaloid biosynthesis) and a considerable number of genes such as AED3-like, A4U43, 21 kDa protein-like, 3-O-glycotransferase 2-like, AtDIR19, MST4, CASP-like protein 1D1 were discovered in association with the biosynthesis of alkaloids in leaves and roots. Some transcription factor families, i.e., AP2/ERF, GRAS, NAC, bHLH, MYB-related, C3H, FARI, WRKY, HB-HD-ZIP, C2H2, and bZIP were also found to have a prominent role in regulating the synthesis of alkaloids and steroidal alkaloids in the leaves and roots of V. mengtzeanum. The metabolome analysis revealed 74 significantly accumulated metabolites, with 55 differentially accumulated in leaves compared to root tissues. Out of 74 metabolites, 18 alkaloids were highly accumulated in the roots. A novel alkaloid compound viz; 3-Vanilloylygadenine was discovered in root samples. Conjoint analysis of transcriptome and metabolome studies has also highlighted potential genes involved in regulation and transport of alkaloid compounds. Here, we have presented a comprehensive metabolic and transcriptome profiling of V. mengtzeanum tissues. In earlier reports, only the roots were reported as a rich source of alkaloid biosynthesis, but the current findings revealed both leaves and roots as significant manufacturing factories for alkaloid biosynthesis.
Collapse
Affiliation(s)
- Jiajia Liu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Lijun Han
- Yunnan Key Laboratory for Dai and Yi Medicines, University of Chinese Medicine Kunming, Kunming, China
| | - Guodong Li
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Aili Zhang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoli Liu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingzhi Zhao
- Kunming Medical University Haiyuan College, Kunming, China,*Correspondence: Mingzhi Zhao,
| |
Collapse
|
3
|
Indole-Based Tubulin Inhibitors: Binding Modes and SARs Investigations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051587. [PMID: 35268688 PMCID: PMC8911766 DOI: 10.3390/molecules27051587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Tubulin inhibitors can interfere with normal cell mitosis and inhibit cell proliferation through interfering with the normal structure and function of microtubules, forming spindle filaments. Indole, as a privileged pharmacological skeleton, has been widely used in anti-cancer inhibitors. A variety of alkaloids containing an indole core obtained from natural sources have been proven to inhibit tubulin polymerization, and an ever-increasing number of synthetic indole-based tubulin inhibitors have been reported. Among these, several kinds of indole-based derivatives, such as TMP analogues, aroylindoles, arylthioindoles, fused indole, carbazoles, azacarbolines, alkaloid nortopsentin analogues and bis-indole derivatives, have shown good inhibition activities towards tubulin polymerization. The binding modes and SARs investigations of synthetic indole derivatives, along with a brief mechanism on their anti-tubulin activity, are presented in this review.
Collapse
|
4
|
Cao N, Li S, Xu A, Li M, Zou X, Ke Z, Deng G, Cheng X, Wang C. Dynamic Changes of Endogenic or Exogenic β-Carboline Alkaloid Harmine in Different Mammals and Human in vivo at Developmental and Physiological States. Front Aging Neurosci 2022; 13:773638. [PMID: 35095466 PMCID: PMC8794950 DOI: 10.3389/fnagi.2021.773638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Several β-carboline alkaloids (βCBs), such as harmine, harmaline, harmane, and nor-harmane, are effective for Alzheimer's disease mouse models. They can be found in some plants, common foodstuffs, and blank plasma of various mammals. However, whether these compounds in mammals are exogenous or endogenous remain unclear. METHODS The exposure levels of βCBs and of neurotransmitters in plasma and tissues of pup rats, aging rats, mice of different physiological states, and healthy volunteers were detected by using UPLC-MS/MS. Plasma and tissue samples from 110 newborn rats up to 29 days old at 11 sampling points were collected and were analyzed to determine the concentration variation of βCBs in the developmental phase of newborn rats. The plasma of rats aged 2 to 18 months was used to detect the variation trend of βCBs and with some neurotransmitters. The plasma samples of normal C57BL/6 mice, APP/PS1 double transgenic mice, and scopolamine-induced memory impairment mice were collected and were analyzed to compare the difference of βCBs in different physiological states. The exposure levels of βCBs such as harmine, harmaline, and harmane in plasma of 550 healthy volunteers were also detected and analyzed on the basis of gender, race, and age. RESULTS Results showed that harmine was the main compound found in rats, mice, and human, which can be detected in a newborn rat plasma (0.16 ± 0.03 ng/ml) and brain (0.33 ± 0.14 ng/g) without any exogenous consumption. The concentration of harmine in rat plasma showed a decreasing trend similar to the exposure levels of neurotransmitters such as 5-hydroxytryptamine, acetylcholine chloride, glutamic acid, tyrosine, and phenylalanine during the growth period of 18 months. The harmine exposure in rats and human indicates high dependence on the physiological and pathological status such as aging, gender, and race. CONCLUSION The dynamic changes of harmine exposure in different animals and human, in vivo, at developmental and physiological states indicate that harmine is a naturally and widely distributed endogenous substance in different mammals and human. In addition to exogenous ingestion, spontaneous synthesis might be another important source of harmine in mammals, which should be verified by further experiment.
Collapse
Affiliation(s)
- Ning Cao
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Chinese Compound Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuping Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Chinese Compound Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aimin Xu
- Kashi Prefecture First People’s Hospital, Kashi, China
| | - Manlin Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Chinese Compound Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoguang Zou
- Kashi Prefecture First People’s Hospital, Kashi, China
| | - Zunji Ke
- School of Basic Medicine, Shanghai University of Chinese Medicine, Shanghai, China
| | - Gang Deng
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Chinese Compound Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuemei Cheng
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Chinese Compound Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Chinese Compound Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|