1
|
Xing G, Chen H, Guo Z, Cui Y, Li Y, Shen J. OTUD6B promotes cholangiocarcinoma growth by regulating STAT3 phosphorylation through deubiquitination of PTK2. Cell Biol Int 2024; 48:1766-1778. [PMID: 39192576 DOI: 10.1002/cbin.12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Cholangiocarcinoma (CCA) is a hepatobiliary carcinoma with uncontrolled cell proliferation, poor prognosis, and high mortality. The ovarian tumor structural domain (OTU) containing protein 6B (OTUD6B) belongs to the OTU deubiquitin family and is vital in tumor development. However, its expression and biological function in CCA remain unknown. The expression of OTUD6B in CCA was analyzed using TIMER2.0, UALCAN, and GEO databases. MTT, clonal formation assay, immunofluorescence staining, immunohistochemistry staining, and flow cytometry examined the regulation of OTUD6B on cell proliferation, cycle, and apoptosis. The effects of OTUD6B on tumor volume and weight were assessed using the xenograft tumor model. The activities of PTK2 and STAT3 were detected by western blot and CO-IP. The biological database identified that OTUD6B was upregulated in CCA. In CCA cells, OTUD6B knockdown reduced CCA cell proliferation and promoted apoptosis. Cell cycle analysis indicated that the cycle stopped at the G0/G1 phase after OTU6B downregulation. Furthermore, OTUD6B knockdown resulted in a decrease in tumor volume and weight in xenograft tumor models. Mechanistically, OTUD6B is involved in the deubiquitination of PTK2. PTK2 further affected the phosphorylation of STAT3 thereby regulating the CCA process. Our study demonstrates that OTUD6B knockdown participates in the ubiquitination of PTK2 and phosphorylation of STAT3 to alleviate the process of CCA. These results suggest that OTUD6B may be a potential new strategy for CCA treatment.
Collapse
Affiliation(s)
- Guoqiang Xing
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Hekai Chen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Zhiyue Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Cui
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yongyuan Li
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Jianwei Shen
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| |
Collapse
|
2
|
Ashrafizadeh M, Zhang W, Tian Y, Sethi G, Zhang X, Qiu A. Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation. Cancer Metastasis Rev 2024; 43:229-260. [PMID: 38374496 DOI: 10.1007/s10555-024-10168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu Tian
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Aiming Qiu
- Department of Geriatrics, the Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
3
|
Wu Z, Han Y, Li X, Zhang Q, Deng R, Ren H, He W, Wu X, Guo H, Zhu D. Design, synthesis and anticancer evaluation of polymethoxy aurones as potential cell cycle inhibitors. Heliyon 2023; 9:e21054. [PMID: 37886750 PMCID: PMC10597867 DOI: 10.1016/j.heliyon.2023.e21054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Background Cancer is the most fatal disease in humans and the aberrant activity of various cell cycle proteins results in uncontrolled tumor cell proliferation, thus, regulating the cell cycle is an attractive target in cancer therapy. Objectives Aurone is a naturally occurring active compound with a wide range of biological activities, of which 3, 4, 5-trimethoxyphenyl (TMP) is an important microtubule targeting pharmacophore. Based on the pharmacophore combination principle, we incorporate the TMP pharmacophore into the aurone structure and design a novel polymethoxy derivative that is expected to inhibit tumor cell proliferation through regulating the cell cycle. Methods By introducing different substituents on C-4' and C-3', a series of new 4, 5, 6-trimethoxy aurone derivatives have been designed and synthesized. DU145, MCF-7 and H1299 cell lines were selected to evaluate their anticancer activity. The compound with the best cytotoxicity was then selected and the anticancer mechanisms were investigated by network pharmacology, flow cytometry, Western blot, and cell heat transfer assay. ADMET prediction evaluated the draggability of aurone derivatives. Results Aurones 1b and 1c have selective anti-proliferative activity against DU145 cells. Among them, the compound 1c have better cytotoxicity against DU145. Compound 1c could bind the active cavity of CyclinB1/CDK1/CKS complex protein and induced G2/M phase arrest of DU145 cells by regulating the expression of CyclinB1 and p21. Compound 1c satisfies the Lipinski rule, is suitable for the absorption and metabolism index, and has a lower risk of cardiac toxicity. Conclusions Polymethoxy aurones 1c might function as a CyclinB1/CDK1 inhibitor that deserved to be further developed for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Zheng Wu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Yaoyao Han
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xiaolan Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Qiuping Zhang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Renjin Deng
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Hong Ren
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Wenjing He
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xinduo Wu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
4
|
Yi B, Zhang S, Yan S, Liu Y, Feng Z, Chu T, Liu J, Wang W, Xue J, Zhang C, Wang Y. Marsdenia tenacissima enhances immune response of tumor infiltrating T lymphocytes to colorectal cancer. Front Immunol 2023; 14:1238694. [PMID: 37649480 PMCID: PMC10465246 DOI: 10.3389/fimmu.2023.1238694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Tumor-infiltrating T lymphocytes in the tumor microenvironment are critical factors influencing the prognosis and chemotherapy outcomes. As a Chinese herbal medicine, Marsdenia tenacissima extract (MTE) has been widely used to treat cancer in China. Its immunoregulatory effects on tumor-associated macrophages is well known, but whether it regulates tumor-infiltrating T-cell functions remains unclear. Method We collected 17 tumor samples from MTE-administered colorectal cancer patients, 13 of which showed upregulation of CD3+/CD8+ tumor-infiltrating T cells. Further in vitro and in vivo experiments were performed to investigate the regulatory effects of MTE on tumor-infiltrating T cells and immune escape of tumors. Results Under single and co-culture conditions, MTE inhibited TGF-β1 and PD-L1 expression in the colorectal cancer (CRC) cell lines HCT116 and LoVo. In Jurkat cells, MTE inhibited FOXP3 and IL-10 expression, increased IL-2 expression, but had no effect on PD-1 expression. These findings were confirmed in vitro using subcutaneous and colitis-associated CRC mouse models. MTE also increased the density of CD3+/CD8+ tumor-infiltrating T cells and exhibited considerable tumor-suppressive effects in these two tumor mouse models. Conclusions Our findings suggested that MTE inhibits the immune escape of cancer cells, a precipitating factor increasing the immune response of T lymphocytes.
Collapse
Affiliation(s)
- Ben Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Suying Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yanfei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Zhiqiang Feng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Tianhao Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Jun Liu
- Department of Radiology, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Wei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|