1
|
Bogolyubov DS, Chistyakova LV, Goodkov AV. Glomerulosomes: morphologically distinct nuclear organelles of unknown nature. PROTOPLASMA 2022; 259:1409-1415. [PMID: 35103866 DOI: 10.1007/s00709-022-01742-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The nucleus of some representatives of the genus Pelomyxa (Amoebozoa, Archamoebae, Pelobiontida) contains specific bodies (membrane-less organelles). They may be either embedded in the nucleolar mass or detached from the nucleolus. We termed these nuclear bodies the glomerulosomes for their characteristic ultrastructural appearance. The glomerulosomes are distinct nuclear bodies, about 1 μm in diameter. The morphological and diagnostic unit of a glomerulosome is an electron-dense thread/string, about 30-40 nm in thickness. These threads are not direct continuation of the nucleolar material. The threads create the unique geometric appearance of the glomerulosome by being organized into precisely parallel rows/cords. Each cord of the threads can curve at different angles within the glomerulosome body, but the threads themselves are not coiled. Nowadays, the glomerulosomes have been discovered in P. palustris, P. stagnalis, P. paradoxa, and Pelomyxa sp. Despite the unique appearance of glomerulosomes, their existence may be a more common phenomenon in eukaryotic cells than just a specific feature of the nucleus of elected pelomyxes.
Collapse
Affiliation(s)
- Dmitry S Bogolyubov
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | | | - Andrew V Goodkov
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
2
|
Ahmed RB, Urbisz AZ, Świątek P. An ultrastructural study of the ovary cord organization and oogenesis in the amphibian leech Batracobdella algira (Annelida, Clitellata, Hirudinida). PROTOPLASMA 2021; 258:191-207. [PMID: 33033944 DOI: 10.1007/s00709-020-01560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
This study reveals the ovary micromorphology and the course of oogenesis in the leech Batracobdella algira (Glossiphoniidae). Using light, fluorescence, and electron microscopies, the paired ovaries were analyzed. At the beginning of the breeding season, the ovaries were small, but as oogenesis progressed, they increased in size significantly, broadened, and elongated. A single convoluted ovary cord was located inside each ovary. The ovary cord was composed of numerous germ cells gathered into syncytial groups, which are called germ-line cysts. During oogenesis, the clustering germ cells differentiated into two functional categories, i.e., nurse cells and oocytes, and therefore, this oogenesis was recognized as being meroistic. As a rule, each clustering germ cell had one connection in the form of a broad cytoplasmic channel (intercellular bridge) that connected it to the cytophore. There was a synchrony in the development of the clustering germ cells in the whole ovary cord. In the immature leeches, the ovary cords contained undifferentiated germ cells exclusively, from which, previtellogenic oocytes and nurse cells differentiated as the breeding season progressed. Only the oocytes grew considerably, gathered nutritive material, and protruded at the ovary cord surface. The vitellogenic oocytes subsequently detached from the cord and filled tightly the ovary sac, while the nurse cells and the cytophore degenerated. Ripe eggs were finally deposited into the cocoons. A comparison of the ovary structure and oogenesis revealed that almost all of the features that are described in the studied species were similar to those that are known from other representatives of Glossiphoniidae, which indicates their evolutionary conservatism within this family.
Collapse
Affiliation(s)
- Raja Ben Ahmed
- Faculté des Sciences de Tunis, LR18ES41 Ecologie, Biologie et Physiologie des organismes aquatiques, Université de Tunis El Manar, 2092, Tunis, Tunisia.
| | - Anna Z Urbisz
- Faculté des Sciences de Tunis, LR18ES41 Ecologie, Biologie et Physiologie des organismes aquatiques, Université de Tunis El Manar, 2092, Tunis, Tunisia
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa, 9, 40-007, Katowice, Poland
| | - Piotr Świątek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa, 9, 40-007, Katowice, Poland
| |
Collapse
|
3
|
Bogolyubov DS. Karyosphere (Karyosome): A Peculiar Structure of the Oocyte Nucleus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 337:1-48. [PMID: 29551157 DOI: 10.1016/bs.ircmb.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The karyosphere, aka the karyosome, is a meiosis-specific structure that represents a "knot" of condensed chromosomes joined together in a limited volume of the oocyte nucleus. The karyosphere is an evolutionarily conserved but morphologically rather "multifaceted" structure. It forms at the diplotene stage of meiotic prophase in many animals, from hydra and Drosophila to human. Karyosphere formation is generally linked with transcriptional silencing of the genome. It is believed that karyosphere/karyosome is a prerequisite for proper completion of meiotic divisions and further development. Here, a brief review on the karyosphere features in some invertebrates and vertebrates is provided. Special emphasis is made on terminology, since current discrepancies in this field may lead to confusions. In particular, it is proposed to distinguish the karyosphere with a capsule and the karyosome (a karyosphere devoid of a capsule). The "inverted" karyospheres are also considered, in which the chromosomes situate externally to an extrachromosomal structure (e.g., in human oocytes).
Collapse
Affiliation(s)
- Dmitry S Bogolyubov
- Institute of Cytology of the Russian Academy of Science, St. Petersburg, Russia.
| |
Collapse
|
4
|
Ilicheva N, Podgornaya O, Bogolyubov D, Pochukalina G. The karyosphere capsule in Rana temporaria oocytes contains structural and DNA-binding proteins. Nucleus 2018; 9:516-529. [PMID: 30272509 PMCID: PMC6244735 DOI: 10.1080/19491034.2018.1530935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
During the last stages of oogenesis, oocyte chromosomes condense and come close together, forming the so-called karyosphere. Karyosphere formation is accompanied by an essential decrease in transcriptional activity. In the grass frog Rana temporaria, the karyosphere is surrounded by an extrachromosomal capsule that separates the chromosomes from the rest of the nucleoplasm. The karyosphere capsule (KC) of R. temporaria has been investigated in detail at the ultrastructural level, but its protein composition remained largely unknown. We demonstrate here that nuclear actin, especially F-actin, as well as lamins A/C and B are the most abundant proteins of the KC. Key proteins of nuclear pore complexes, such as Nup93 and Nup35, are also detectable in the KC. New antibodies recognizing the telomere-binding protein TRF2 allowed us to localize TRF2 in nuclear speckles. We also found that the R. temporaria KC contains some proteins involved in chromatin remodeling, including topoisomerase II and ATRX. Thus, we believe that KC isolates the chromosomes from the rest of the nucleoplasm during the final period of oocyte growth (late diplotene) and represents a specialized oocyte nuclear compartment to store a variety of factors involved in nuclear metabolism that can be used in future early development. Abbreviations: BrUTP: 5-bromouridine 5'-triphosphate; CytD: cytochalasin D; IGCs: interchromatin granule clasters; IgG: immunoglobulin G; KC: karyosphere capsule; Mw: molecular weight; NE: nuclear envelope; PBS: phosphate buffered saline; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; Topo II: topoisomerase II.
Collapse
Affiliation(s)
- Nadya Ilicheva
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga Podgornaya
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
- Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, St. Petersburg, Russia
- Laboratory of Biomedical Cell Technology, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Dmitry Bogolyubov
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Galina Pochukalina
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
5
|
Stepanova IS, Bogolyubov DS. Localization of the chromatin-remodeling protein ATRX in the oocyte nucleus of some insects. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1990519x17050091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kulikova T, Khodyuchenko T, Petrov Y, Krasikova A. Low-voltage scanning electron microscopy study of lampbrush chromosomes and nuclear bodies in avian and amphibian oocytes. Sci Rep 2016; 6:36878. [PMID: 27857188 PMCID: PMC5114574 DOI: 10.1038/srep36878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/24/2016] [Indexed: 12/01/2022] Open
Abstract
Nucleus is a highly compartmentalized part of the cell where the key processes of genome functionality are realized through the formation of non-membranous nuclear domains. Physically nuclear domains appear as liquid droplets with different viscosity stably maintained throughout the interphase or during the long diplotene stage of meiosis. Since nuclear body surface represents boundary between two liquid phases, the ultrastructural surface topography of nuclear domains is of an outstanding interest. The aim of this study was to examine ultrathin surface topography of the amphibian and avian oocyte nuclear structures such as lampbrush chromosomes, nucleoli, histone-locus bodies, Cajal body-like bodies, and the interchromatin granule clusters via low-voltage scanning electron microscopy. Our results demonstrate that nuclear bodies with similar molecular composition may differ dramatically in the surface topography and vice versa, nuclear bodies that do not share common molecular components may possess similar topographical characteristics. We also have analyzed surface distribution of particular nuclear antigens (double stranded DNA, coilin and splicing snRNA) using indirect immunogold labeling with subsequent secondary electron detection of gold nanoparticles. We suggest that ultrastructural surface morphology reflects functional status of a nuclear body.
Collapse
Affiliation(s)
| | | | - Yuri Petrov
- Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Alla Krasikova
- Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
7
|
Khodyuchenko TA, Krasikova AV. Cajal bodies and histone locus bodies: Molecular composition and function. Russ J Dev Biol 2014. [DOI: 10.1134/s106236041406006x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Urbisz AZ, Lai YT, Świątek P. Barbronia weberi(Clitellata, Hirudinida, Salifidae) has ovary cords of the Erpobdella type. J Morphol 2013; 275:479-88. [DOI: 10.1002/jmor.20229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Anna Z. Urbisz
- Department of Animal Histology and Embryology; University of Silesia; Bankowa 9 40-007 Katowice Poland
| | - Yi-Te Lai
- Institute of Zoology; National Taiwan University; 1 Roosevelt Rd., Sec. 4, Da-an District Taipei 106 Taiwan
- Department of Biology; University of Eastern Finland; PO Box 111 FI 80101 Joensuu Finland
| | - Piotr Świątek
- Department of Animal Histology and Embryology; University of Silesia; Bankowa 9 40-007 Katowice Poland
| |
Collapse
|
9
|
Bogolyubov DS, Batalova FM, Kiselyov AM, Stepanova IS. Nuclear structures in Tribolium castaneum oocytes. Cell Biol Int 2013; 37:1061-79. [PMID: 23686847 DOI: 10.1002/cbin.10135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/21/2013] [Indexed: 12/12/2022]
Abstract
The first ultrastructural and immunomorphological characteristics of the karyosphere (karyosome) and extrachromosomal nuclear bodies in the red flour beetle, Tribolium castaneum, are presented. The karyosphere forms early in the diplotene stage of meiotic prophase by the gathering of all oocyte chromosomes in a limited nuclear volume. Using the BrUTP assay, T. castaneum oocyte chromosomes united in the karyosphere maintain their transcriptional activity until the end of oocyte growth. Hyperphosphorylated RNA polymerase II and basal transcription factors (TFIID and TFIIH) were detected in the perichromatin region of the karyosphere. The T. castaneum karyosphere has an extrachromosomal capsule that separates chromosomes from the rest of the nucleoplasm. Certain structural proteins (F-actin, lamin B) were found in the capsule. Unexpectedly, the karyosphere capsule in T. castaneum oocytes was found to be enriched in TMG-capped snRNAs, which suggests that the capsule is not only a structural support for the karyosphere, but may be involved in biogenesis of snRNPs. We also identified the counterparts of 'universal' extrachromosomal nuclear domains, Cajal bodies (CBs) and interchromatin granule clusters (IGCs). Nuclear bodies containing IGC marker protein SC35 display some features unusual for typical IGCs. SC35 domains in T. castaneum oocytes are predominantly fibrillar complex bodies that do not contain trimethyl guanosine (TMG)-capped small nuclear (sn) RNAs. Microinjections of 2'-O-methyl (U)22 probes into the oocytes allowed revealing poly(A)+ RNAs in these nuclear domains. Several proteins related to mRNA export (heterogeneous ribonucleoprotein core protein A1, export adapters Y14 and Aly and export receptor NXF1) were also detected there. We believe that unusual SC35 nuclear domains of T. castaneum oocytes are possibly involved in mRNP but not snRNP biogenesis.
Collapse
Affiliation(s)
- Dmitry S Bogolyubov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia.
| | | | | | | |
Collapse
|
10
|
An ultrastructural study of the ovary cord organization and oogenesis in Erpobdella johanssoni (Annelida, Clitellata: Hirudinida). Micron 2013; 44:275-86. [DOI: 10.1016/j.micron.2012.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/18/2012] [Accepted: 07/29/2012] [Indexed: 11/22/2022]
|
11
|
Krasikova A, Khodyuchenko T, Maslova A, Vasilevskaya E. Three-dimensional organisation of RNA-processing machinery in avian growing oocyte nucleus. Chromosome Res 2012; 20:979-94. [DOI: 10.1007/s10577-012-9327-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Bogolyubov DS, Kiselyov AM, Shabelnikov SV, Parfenov VN. Polyadenylated RNA and mRNA export factors in extrachromosomal nuclear domains of vitellogenic oocytes in the yellow mealworm Tenebrio molitor. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s1990519x12050045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Bogolyubov DS, Batalova FM, Kiselyov AM, Parfenov VN. Distribution of 5'-trimethylguanosine capped small nuclear RNAs in extrachromosomal oocyte nuclear domains of the laboratory insect, Tribolium castaneum. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2012; 444:198-201. [PMID: 22760624 DOI: 10.1134/s0012496612030192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Indexed: 11/23/2022]
|
14
|
Non-canonical Cajal bodies form in the nucleus of late stage avian oocytes lacking functional nucleolus. Histochem Cell Biol 2012; 138:57-73. [PMID: 22382586 DOI: 10.1007/s00418-012-0938-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
Abstract
In the somatic cell nucleus, there are several universal domains such as nucleolus, SC35-domains, Cajal bodies (CBs) and histone locus bodies (HLBs). Among them, CBs were described more than 100 years ago; however, we still do not have a final understanding of their nature and biological significance. The giant nucleus of avian and amphibian growing oocytes represents an advantageous model for analysis of functions and biogenesis of various nuclear domains. Nevertheless, in large-sized avian oocytes that contain transcriptionally active lampbrush chromosomes, CB-like organelles have not been identified yet. Here we demonstrate that in the pigeon (Columba livia) oocyte nucleus, characterized by absence of any functional nucleoli, extrachromosomal spherical bodies contain TMG-capped spliceosomal snRNAs, core proteins of Sm snRNPs and the protein coilin typical for CBs, but not splicing factor SC35 nor the histone pre-mRNA 3'-end processing factor symplekin. The results establish that coilin-rich nuclear organelles in pigeon late-stage oocyte are not the equivalents of HLBs but belong to a group of CBs. At the same time, they do not contain the snoRNP/scaRNP protein fibrillarin involved in 2'-O-methylation of snoRNAs and snRNAs. Thus, the nucleus of late-stage pigeon oocytes houses CB-like organelles that have an unusual molecular composition and are implicated in the snRNP biogenesis pathway. These data demonstrate that snRNP-rich non-canonical CBs can form in the absence of nucleolus. We argue that pigeon oocytes represent a new promising model to investigate CB modular organization, functions and formation mechanism.
Collapse
|
15
|
Lamaye F, Galliot S, Alibardi L, Lafontaine DLJ, Thiry M. Nucleolar structure across evolution: the transition between bi- and tri-compartmentalized nucleoli lies within the class Reptilia. J Struct Biol 2011; 174:352-9. [PMID: 21335089 DOI: 10.1016/j.jsb.2011.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
Two types of nucleolus can be distinguished among eukaryotic cells: a tri-compartmentalized nucleolus in amniotes and a bi-compartmentalized nucleolus in all the others. However, though the nucleolus' ultrastructure is well characterized in mammals and birds, it has been so far much less studied in reptiles. In this work, we examined the ultrastructural organization of the nucleolus in various tissues from different reptilian species (three turtles, three lizards, two crocodiles, and three snakes). Using cytochemical and immunocytological methods, we showed that in reptiles both types of nucleolus are present: a bi-compartmentalized nucleolus in turtles and a tri-compartmentalized nucleolus in the other species examined in this study. Furthermore, in a given species, the same type of nucleolus is present in all the tissues, however, the importance and the repartition of those nucleolar components could vary from one tissue to another. We also reveal that, contrary to the mammalian nucleolus, the reptilian fibrillar centers contain small clumps of condensed chromatin and that their surrounding dense fibrillar component is thicker. Finally, we also report that Cajal bodies are detected in reptiles. Altogether, we believe that these results have profound evolutionarily implications since they indicate that the point of transition between bipartite and tripartite nucleoli lies at the emergence of the amniotes within the class Reptilia.
Collapse
Affiliation(s)
- Françoise Lamaye
- Cellular Biology Unit, GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, B36, 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
16
|
Interchromatin granule clusters of the scorpionfly oocytes contain poly(A)+RNA, heterogeneous ribonucleoproteins A/B and mRNA export factor NXF1. Cell Biol Int 2010; 34:1163-70. [DOI: 10.1042/cbi20090434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Abstract
Nuclear actin is the essential component of gene expression. Here we show that the pattern of F- actin distribution in the nuclei of early mouse embryos depends on the experimental conditions and does not represent nonspecific cell reaction for the experimental influence.
Collapse
|