1
|
Han Y, Wang D, Peng L, Huang T, He X, Wang J, Ou C. Single-cell sequencing: a promising approach for uncovering the mechanisms of tumor metastasis. J Hematol Oncol 2022; 15:59. [PMID: 35549970 PMCID: PMC9096771 DOI: 10.1186/s13045-022-01280-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Single-cell sequencing (SCS) is an emerging high-throughput technology that can be used to study the genomics, transcriptomics, and epigenetics at a single cell level. SCS is widely used in the diagnosis and treatment of various diseases, including cancer. Over the years, SCS has gradually become an effective clinical tool for the exploration of tumor metastasis mechanisms and the development of treatment strategies. Currently, SCS can be used not only to analyze metastasis-related malignant biological characteristics, such as tumor heterogeneity, drug resistance, and microenvironment, but also to construct metastasis-related cell maps for predicting and monitoring the dynamics of metastasis. SCS is also used to identify therapeutic targets related to metastasis as it provides insights into the distribution of tumor cell subsets and gene expression differences between primary and metastatic tumors. Additionally, SCS techniques in combination with artificial intelligence (AI) are used in liquid biopsy to identify circulating tumor cells (CTCs), thereby providing a novel strategy for treating tumor metastasis. In this review, we summarize the potential applications of SCS in the field of tumor metastasis and discuss the prospects and limitations of SCS to provide a theoretical basis for finding therapeutic targets and mechanisms of metastasis.
Collapse
Affiliation(s)
- Yingying Han
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lushan Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Department of Pathology, School of Basic Medicine, Central South University, Changsha, 410031, Hunan, China. .,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
2
|
Vageli DP, Doukas PG, Doukas SG, Tsatsakis A, Judson BL. Noxious Combination of Tobacco Smoke Nitrosamines with Bile, Deoxycholic Acid, Promotes Hypopharyngeal Squamous Cell Carcinoma, via NFκB, In Vivo. Cancer Prev Res (Phila) 2022; 15:297-308. [PMID: 35502554 DOI: 10.1158/1940-6207.capr-21-0529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
Tobacco smoking is the most known risk factor for hypopharyngeal cancer. Bile reflux has recently been documented as an independent risk factor for NFκB-mediated hypopharyngeal squamous cell carcinoma. However, the carcinogenic effect of tobacco smoke on the hypopharynx and its combination with bile has not yet been proven by direct evidence. We investigated whether in vivo chronic exposure (12-14 weeks) of murine (C57Bl/6J) hypopharyngeal epithelium to tobacco smoke components (TSC) [N-nitrosamines; 4-(N-Methyl-N-Nitrosamino)-1-(3-pyridyl)-1-butanone (0.2 mmol/L), N-nitrosodiethylamine (0.004 mmol/L)], as the sole drinking fluid 5 days per week, along with topically applied (two times/day) bile [deoxycholic acid (0.28 mmol/L)], can accelerate a possible TSC-induced neoplastic process, by enhancing NFκB activation and the associated oncogenic profile, using histologic, IHC, and qPCR analyses. We provide direct evidence of TSC-induced premalignant lesions, which can be exacerbated by the presence of bile, causing invasive carcinoma. The combined chronic exposure of the hypopharynx to TSC with bile causes advanced NFκB activation and profound overexpression of Il6, Tnf, Stat3, Egfr, Wnt5a, composing an aggressive phenotype. We document for the first time the noxious combination of bile with a known risk factor, such as tobacco smoke nitrosamines, in the development and progression of hypopharyngeal cancer, via NFκB, in vivo. The data presented here encourage further investigation into the incidence of upper aerodigestive tract cancers in smokers with bile reflux and the early identification of high-risk individuals in clinical practice. This in vivo model is also suitable for large-scale studies to reveal the nature of inflammatory-associated aerodigestive tract carcinogenesis and its targeted therapy. PREVENTION RELEVANCE Early assessment of bile components in refluxate of tobacco users can prevent the chronic silent progression of upper aerodigestive tract carcinogenesis. This in vivo model indicates that bile reflux might have an additive effect on the tobacco-smoke N-nitrosamines effect and could be suitable for large-scale studies of diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut
| | - Panagiotis G Doukas
- The Yale Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut
| | - Sotirios G Doukas
- The Yale Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut
- Department of Toxicology, Department of Forensic Sciences and Laboratory of Toxicology, Medical School, University of Crete, Heraklion, Greece
- Department of Medicine, Rutgers/Saint Peter's University Hospital, New Brunswick, New Jersey
| | - Aristidis Tsatsakis
- Department of Toxicology, Department of Forensic Sciences and Laboratory of Toxicology, Medical School, University of Crete, Heraklion, Greece
| | - Benjamin L Judson
- The Yale Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
3
|
Vageli DP, Doukas PG, Siametis A, Judson BL. Targeting STAT3 prevents bile reflux-induced oncogenic molecular events linked to hypopharyngeal carcinogenesis. J Cell Mol Med 2021; 26:75-87. [PMID: 34850540 PMCID: PMC8742186 DOI: 10.1111/jcmm.17011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/26/2022] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) oncogene is a transcription factor with a central role in head and neck cancer. Hypopharyngeal cells (HCs) exposed to acidic bile present aberrant activation of STAT3, possibly contributing to its oncogenic effect. We hypothesized that STAT3 contributes substantially to the bile reflux‐induced molecular oncogenic profile, which can be suppressed by STAT3 silencing or pharmacological inhibition. To explore our hypothesis, we targeted the STAT3 pathway, by knocking down STAT3 (STAT3 siRNA), and inhibiting STAT3 phosphorylation (Nifuroxazide) or dimerization (SI3‐201; STA‐21), in acidic bile (pH 4.0)‐exposed human HCs. Immunofluorescence, luciferase assay, Western blot, enzyme‐linked immunosorbent assay and qPCR analyses revealed that STAT3 knockdown or pharmacologic inhibition significantly suppressed acidic bile‐induced STAT3 activation and its transcriptional activity, Bcl‐2 overexpression, transcriptional activation of IL6, TNF‐α, BCL2, EGFR, STAT3, RELA(p65), REL and WNT5A, and cell survival. Our novel findings document the important role of STAT3 in bile reflux‐related molecular oncogenic events, which can be dramatically prevented by STAT3 silencing. STA‐21, SI3‐201 or Nifuroxazide effectively inhibited STAT3 and cancer‐related inflammatory phenotype, encouraging their single or combined application in preventive or therapeutic strategies of bile reflux‐related hypopharyngeal carcinogenesis.
Collapse
Affiliation(s)
- Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Panagiotis G Doukas
- The Yale Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Athanasios Siametis
- The Yale Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Benjamin L Judson
- The Yale Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Xie J, Huang L, Lu YG, Zheng DL. Roles of the Wnt Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 7:590912. [PMID: 33469547 PMCID: PMC7814318 DOI: 10.3389/fmolb.2020.590912] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck tumor. It is a high incidence malignant tumor associated with a low survival rate and limited treatment options. Accumulating conclusions indicate that the Wnt signaling pathway plays a vital role in the pathobiological process of HNSCC. The canonical Wnt/β-catenin signaling pathway affects a variety of cellular progression, enabling tumor cells to maintain and further promote the immature stem-like phenotype, proliferate, prolong survival, and gain invasiveness. Genomic studies of head and neck tumors have shown that although β-catenin is not frequently mutated in HNSCC, its activity is not inhibited by mutations in upstream gene encoding β-catenin, NOTCH1, FAT1, and AJUBA. Genetic defects affect the components of the Wnt pathway in oral squamous cell carcinoma (OSCC) and the epigenetic mechanisms that regulate inhibitors of the Wnt pathway. This paper aims to summarize the groundbreaking discoveries and recent advances involving the Wnt signaling pathway and highlight the relevance of this pathway in head and neck squamous cell cancer, which will help provide new insights into improving the treatment of human HNSCC by interfering with the transcriptional signaling of Wnt.
Collapse
Affiliation(s)
- Jing Xie
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Li Huang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - You-Guang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Da-Li Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Connacher MK, Tay JW, Ahn NG. Rear-polarized Wnt5a-receptor-actin-myosin-polarity (WRAMP) structures promote the speed and persistence of directional cell migration. Mol Biol Cell 2017; 28:1924-1936. [PMID: 28592632 PMCID: PMC5541843 DOI: 10.1091/mbc.e16-12-0875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022] Open
Abstract
The WRAMP structure is a Wnt5-induced association of a cell adhesion molecule with F-actin and myosin IIB at the rear of migrating cells. WRAMP structures control the speed and persistence of directional cell movement in melanoma and nonmelanoma cells. In contrast to events at the cell leading edge, rear-polarized mechanisms that control directional cell migration are poorly defined. Previous work described a new intracellular complex, the Wnt5a-receptor-actomyosin polarity (WRAMP) structure, which coordinates the polarized localization of MCAM, actin, and myosin IIB in a Wnt5a-induced manner. However, the polarity and function for the WRAMP structure during cell movement were not determined. Here we characterize WRAMP structures during extended cell migration using live-cell imaging. The results demonstrate that cells undergoing prolonged migration show WRAMP structures stably polarized at the rear, where they are strongly associated with enhanced speed and persistence of directional movement. Strikingly, WRAMP structures form transiently, with cells displaying directional persistence during periods when they are present and cells changing directions randomly when they are absent. Cells appear to pause locomotion when WRAMP structures disassemble and then migrate in new directions after reassembly at a different location, which forms the new rear. We conclude that WRAMP structures represent a rear-directed cellular mechanism to control directional migration and that their ability to form dynamically within cells may control changes in direction during extended migration.
Collapse
Affiliation(s)
| | - Jian Wei Tay
- BioFrontiers Institute Advanced Light Microscopy Core, University of Colorado, Boulder, CO 80309
| | - Natalie G Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| |
Collapse
|
6
|
Ahsan R, Baisiwala S, Ahmed AU. Rogue one: another faction of the Wnt empire implicated in assisting GBM progression. Transl Cancer Res 2017; 6:S321-S327. [PMID: 30662831 DOI: 10.21037/tcr.2017.03.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It remains incumbent on researchers to conceive novel treatments for the most common primary malignancy of the brain in adults, glioblastoma multiforme (GBM), as the standard of care for patients today fails to yield a median survival beyond two years following diagnosis. Recent studies have tended towards appreciating the cellular heterogeneity of GBM tumors, focusing on the subpopulation of highly plastic glioblastoma stem cells (GSCs). In the November 2016 issue of Cell, Hu and colleagues developed a de nova GBM model derived from immortalized neural stem cells and, using this model, they demonstrated that GSCs can generate CD133+/CD144+ cells with endothelial cell-like characteristics. Contrasts between the epigenetic state and gene expression level before and after oncogenic transformation of this utilized de novo model for GBM implicated WNT5A, which has been previously shown to play a role in endothelial cell proliferation and migration via non-canonical Wnt signaling, as a mediator of the process. The transdifferentiation was accompanied by alterations in the histone marks at the gene loci of WNT5A, and its transcription factors PAX6 and DXL5. The authors hypothesize that activation of AKT, an aberration of the RTK/PTEN/PI3K pathway observed in the majority of GBM cases, triggers these epigenetic changes causing WNT5A expression. This phenomenon is of obvious clinical significance, as it provides an insight into how GBM may circumvent therapies targeting angiogenesis to achieve the neovascularization required to sustain invasive growth. The unveiling of this atypical differentiation process also raises questions about its interaction with the radiotherapy and chemotherapy commonly used to counter GBM progression. Here, we review the recent efforts to understand the complex mechanisms behind the plasticity of GSCs.
Collapse
Affiliation(s)
- Riasat Ahsan
- The Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shivani Baisiwala
- The Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Atique U Ahmed
- The Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Nwabo Kamdje A, Vecchio L, Takam Kamga P, Seke Etet P, Muller J, Bassi G, Krampera M. Developmental Pathways. INTRODUCTION TO CANCER METASTASIS 2017:337-352. [DOI: 10.1016/b978-0-12-804003-4.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Nwabo Kamdje AH, Takam Kamga P, Tagne Simo R, Vecchio L, Seke Etet PF, Muller JM, Bassi G, Lukong E, Kumar Goel R, Mbo Amvene J, Krampera M. Developmental pathways associated with cancer metastasis: Notch, Wnt, and Hedgehog. Cancer Biol Med 2017; 14:109-120. [PMID: 28607802 PMCID: PMC5444923 DOI: 10.20892/j.issn.2095-3941.2016.0032] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Master developmental pathways, such as Notch, Wnt, and Hedgehog, are signaling systems that control proliferation, cell death, motility, migration, and stemness. These systems are not only commonly activated in many solid tumors, where they drive or contribute to cancer initiation, but also in primary and metastatic tumor development. The reactivation of developmental pathways in cancer stroma favors the development of cancer stem cells and allows their maintenance, indicating these signaling pathways as particularly attractive targets for efficient anticancer therapies, especially in advanced primary tumors and metastatic cancers. Metastasis is the worst feature of cancer development. This feature results from a cascade of events emerging from the hijacking of epithelial-mesenchymal transition, angiogenesis, migration, and invasion by transforming cells and is associated with poor survival, drug resistance, and tumor relapse. In the present review, we summarize and discuss experimental data suggesting pivotal roles for developmental pathways in cancer development and metastasis, considering the therapeutic potential. Emerging targeted antimetastatic therapies based on Notch, Wnt, and Hedgehog pathways are also discussed.
Collapse
Affiliation(s)
| | - Paul Takam Kamga
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | | | - Jean Marc Muller
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Giulio Bassi
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Erique Lukong
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Raghuveera Kumar Goel
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Jeremie Mbo Amvene
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Mauro Krampera
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| |
Collapse
|